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Abstract

Mapping and monitoring of inland water bodies is of high scientific, economic and ecological
importance. This especially applies to rivers, which provide not only an important habitat, but
also pose threads as the major source for floods. Depending on the size, depth, and turbidity of
the river, either acoustic or optical methods are suited for the acquisition of dense and accurate
3D bathymetry data. For relatively small, clear, and shallow alpine rivers, optical methods
are the first choice. Either images or laser scans are taken from crewed or uncrewed platforms
to map the river bottom through the open water surface. For more than a decade, a near
natural reach of the pre-Alpine Pielach River in eastern Austria has been repeatedly surveyed
with laser and photo bathymetry. In this contribution, we present an open benchmark dataset,
which was captured in October 2024 following a devastating flood event in September 2024 with
multi-copter drones operating either RGB cameras or topographic and topo-bathymetric laser
scanners. In this contribution, we present the measurement campaign including airborne and
terrestrial surveys and the data processing steps. Next to standard processing, we introduce
new and innovative image-based bathymetry techniques for rivers with dynamic, wavy water
surfaces. We show that (i) image sequences can be used to mitigate the water surface dynamics,
(i) synchronous oblique drone images can be used to reconstruct the undulating water surface,
and (iii) Neural Radiance Fields are an alternative option to classical methods for mapping
bathymetry. The processed dataset and the captured images are published alongside this
contribution as open science data to serve as a benchmark dataset for the community.
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1. Introduction

Precise 3D mapping of inland running water bodies is of high importance for flood risk mod-
eling (Tsakiris, 2014), habitat mapping (Naura et al., 2016; Hauer et al., 2009), monitoring
of fluvial erosion and sediment transport (Gkiatas et al., 2022; Kramer Stajnko et al., 2023),
and many other applications. This concerns both the shape of the underwater topography and
submerged objects such as macrophytes (Wagner et al., 2024) and deadwood (Zigann et al.,
2023). Larger navigable rivers often show a substantial load of suspended sediment, making the
water turbid. For those inland water bodies, Sound Navigation and Ranging (SONAR) based
on single-beam or multi-beam echo sounding is often the only option for acquiring 3D river bed
data (Lurton, 2002). However, for moderately deep and clear alpine rivers, active and passive
optical methods such as laser bathymetry (Philpot, 2019; Guenther et al., 2000) and photo
bathymetry (Mulsow et al., 2024; Maas, 2015; Mandlburger, 2019) are often more applicable
compared to SONAR-based data acquisition, because many small to medium-sized rivers are
not continuously navigable for survey vessels and the application of small uncrewed surface
vehicles is threaded by currents. However, the complex wavy water surface poses problems for
both image- and laser-based surveys (Sardemann et al., 2024; Mulsow et al., 2024), especially
when carried out by Uncrewed Aerial Vehicles (UAV).

Although low flying altitudes enable high spatial resolution, with typical laser footprint diame-
ters of less than a decimeter and image ground sampling distances even in the centimeter range,
the higher resolution also comes with the downside of a higher sensitivity with respect to local
water surface inclination. For photo bathymetry, this complicates the derivation of underwater
tie points (Gueguen and Mandlburger, 2024), which are necessary for image orientation in the
multi-media case (Mulsow, 2010), and later also the derivation of dense underwater point clouds
(Mandlburger, 2019). Laser bathymetry is less sensitive in this respect, as green laser pulses
are also reflected to a certain extent from the water surface (Guenther et al., 2000) and, in the
best case, provide both surface and bottom information for a single emitted laser pulse. But
also for laser bathymetry, the higher resolution increases the chance that the collimated laser
pulses entirely hit the side of a water wavefront facing away from the sensor, which results in
water surface dropouts. Another problem for laser bathymetry is the very shallow zone, where
the reflected echo pulse can no longer be separated into distinct returns from the surface and
the bottom (Schwarz et al., 2019). Thus, water surface modeling is not straightforward, but re-
quires expert intervention to some extent. Practical workflows for photo and laser bathymetry
therefore often rely on simplified water surface models neglecting the dynamic, wavy water
surface. This decreases precision and accuracy (Westfeld et al., 2017) and makes image-based
derivation of bottom topography impossible, especially for deeper areas.

From the above, we can conclude that both laser and photo bathymetry would benefit from (i)
better methods for coping with dynamic, wave-induced water surface and (ii) existence of trust-
worthy ground-truth reference data to validate new and innovative data processing strategies.
The aim of this contribution is therefore to introduce a real-world benchmark reference data
set, openly accessible to the scientific community, and to introduce new ideas and concepts for
deriving precise bathymetry based on aerial images and laser scans. As a basis, we organized
a multi-purpose and multi-sensor measurement campaign at the pre-alpine Pielach River in
October 2024 following a major flood event in September 2024 (Bloeschl, 2024). In the contri-
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bution, we first describe the study area and the captured data sets in Section 2. In Section 3
we provide detailed information on how the acquired measurements were post-processed to
ensure a reliable benchmark data set. This includes detailed descriptions of the processing the
topo-bathymetric UAV-laser scanning mission, and the UAV-based acquisition of oblique and
aerial images. In this section, we also introduce innovative concepts for deriving bathymetry
from (stereo) images, using conventional or deep learning-based approaches. We present the
resulting benchmark dataset including representative error metrics in Section 4. In the same
section, we also briefly show the first results of the advanced photo bathymetry methods, and
we briefly discuss the obtained results. The article is summarized by the concluding remarks
in Section 5.

2. Materials
2.1. Study area
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Figure 1: Study area: Pielach/Neubacher Au; Left: Orthophoto superimposed with camera positions of the
nadir/oblique UAV flight; Inlet: Location of study area within Austria; Right: Orthophoto superimposed with
trajectories of the topographic and topo-bathymetric LIDAR, campaign.

The study area Neubacher Au (N 48°12'50” | E 15°22’30”; WGS 84) is located in eastern
Austria in the tailwater of the pre-Alpine Pielach River, a right-hand side tributary of the
Danube; see Figure 1. The study area is located within a natural conservation area of the
European Union Natura2000 program (area code: AT1219000). In the southern part of the
study reach, a complete meander loop of the river encloses a riparian forest. North of the river,
there is a pasture. The morphology is dominated by gravel banks, point bars, and steep cliffs.
The river is classified as a riffle-pool type (Melcher and Schmutz, 2010), reaching a maximum



depth of about 3m>. It is characterized by a pluvio-nival regime with typical discharge peaks
during the winter/spring snow melt and heavy rainfall in the summer. However, the last flood
event in September 2024 was caused by perpetual precipitation over a period of more than four
days Bloeschl (2024).

The mean annual discharge within the investigated area is about 7m?®s!, the sediment of the
bed load is dominated by coarse gravel (2cm to 6.3cm), and the average gradient is about
0.4%. The entire catchment area of the Pielach River measures 590 km? and the mean channel
width is approximately 20m. Although the longitudinal continuum of the Pielach River is
disrupted by weirs built for hydropower use and engineering measures, the river has retained
some of its natural self-forming morphological characteristics, such as periodically inundated
sidearms, dynamic gravel bars, large woody debris, small oxbows, etc., within the study area
Zitek et al. (2008). A more detailed description of the study area and its surrounding can be
found in Mandlburger et al. (2015).

2.2. Datasets

To obtain data to tackle the research questions formulated in Section 1, a multi-purpose mea-
surement campaign was conducted on October 24 and 25, 2024. The campaign was carried out
one month after the severe flood event on September 20 and 21, 2024. By then, the river had
regained a good level of transparency, which, in turn, enabled optimal conditions for optical
hydrography.

As advancements in photo bathymetry are the main motivations of the entire initiative, we
conducted multiple UAV image acquisitions. First, the straight east-west river section was
captured with nadir and oblique images using a DJI Zenmuse P1 45 MPix RGB-camera mounted
on a DJI M350 RTK multicopter UAV. With a flying altitude of 80 m above ground level (agl),
the resulting ground sampling distance (GSD) amounts to 1cm for the nadir images. The
oblique images were taken with an angle of 45° using the smart oblique mode in the DJI
Pilot 2 flight controller app, which means that the gimbal constantly swings forward, backward
and sideward to mimic a classical penta camera with a Swiss-cross pattern. The left panel
of Figure 1 shows the positions and orientations of the cameras. This flight block specifically
served for the comparison of classical Dense Image Matching (DIM) versus photo bathymetry
based on Neural Radiance Fields (NeRF) (Mildenhall et al., 2021).

To test the possibility of improving photo bathymetry in the presence of waves with image
sequences, we performed a second image acquisition, where the UAV stopped at predefined
waypoints and hovered in the air for about 1 minute while images were taken with a frame
rate of 0.7 Hz. This results in sequences of about the 100 images per waypoint before the UAV
was flying to the next waypoint, where the same procedure was repeated. Adjacent image
sequences had an overlap to enable 3D stereo reconstruction. In this experiment, we tested
flying altitudes of 25 m, 50 m, and 75 m, respectively, generating GSDs of 3mm to 9 mm.

Finally, this measurement campaign was our first opportunity to obtain a field dataset to map
the undulating water surface with oblique and synchronously captured stereo images, after
working only with laboratory data (Gueguen and Mandlburger, 2024). The goal was to apply
our processing workflow to field data and understand their subsequent specificity. In order to
highlight an optimal configuration, we acquired data from four different positions and imaging
directions with respect to the river flow direction. For that, we used two DJI M350 drones,
each equipped with a DJI Zenmuse P1 camera. The two drones were manually controlled so
that pairs of oblique images were taken at each point. The UAVs hovered at these manually



defined positions and took oblique images with a frame rate of 1Hz. At this stage of the
project, the synchronization of the image capture was only done manually, with both drone
pilots triggering image sequence capture at an acoustic signal. We also took care that as many
Ground Control Points (GCP) as possible are visible in both images to allow image orientation
via spatial resection for each pair of images.

To provide proper reference for the aforementioned photo bathymetry experiments, we con-
ducted UAV laser scanning flights with both topographic and topo-bathymetric UAV laser
scanners. We first captured the entire study area including the alluvial forest with a RIEGL
miniVUX-3-UAV laser scanning operating a near-infrared (NIR) laser with a wavelength of
905nm and a pulse repetition frequency of 300 kHz. The sensor is equipped with a RiILOG-E
navigation unit, consisting of a helix GNSS antenna, a u-blox dual-band GNSS receiver, and a
MEMS IMU. For colorizing the resulting 3D point cloud, the sensor is equipped with a Sony
a6000 RGB camera. We flew the system 60m agl with a flight speed of 6ms~!. These mis-
sion settings resulted in a point density of more than 500 points/m?. The flight trajectory is
shown in Figure 1. Data processing was carried out in the scanner manufacturer’s software
RiPROCESS using Online WaveForm Processing (OWP) (Pfennigbauer et al., 2014). From
this dataset, we derived a Digital Terrain Model (DTM) of the dry area and a Digital Water
Surface Model (DWSM), which we later used for refraction correction.

To obtain continuous underwater reference data, we conducted a topo-bathymetric UAV survey
with the RIEGL VQ-840-GL laser scanner. The sensor uses a green water penetrating laser
operating at a wavelength of 532 nm. The scanner features an elliptical Palmer scan mechanism
with a lateral Field of View (FoV) of £20° and a forward/backward FoV of +14°. We flew
the sensor at a flying altitude of 60 m agl with pairs of flight lines aligned to the river axis
and additional cross-strips in the area of specific interest in the northwestern part of the study
area as plotted in the right panel of Figure 1. As with the NIR laser, RIPROCESS was also
used to process the green laser data. Waveform analysis was carried out using the standard
OWP approach and the water-specific Surface-Volume-Bottom (SVB) algorithm (Schwarz et al.,
2019). Due to the good water clarity, we were able to capture the entire river bed, including
the approx. 3m deep pool areas (cf. Figure 4). Table 1 summarizes the parameters used for
both LiDAR surveys.

System Flight altitude Beam divergence Pulse repetition rate
RIEGL VQ-840-GL 60m + 5m 1 mrad 199 kHz
RIEGL miniVUX-3UAV 60m + 14m 1.5 mrad 300kHz

Table 1: Table displaying the different settings and parameters of the LIDAR systems used in the survey.

In addition to the LiDAR point clouds shown in Figure 4, the RIEGL VQ-840-GL is able
to capture full-waveform data (Figure 2). This feature enables the processing using the SVB
algorithm, as here a possible decomposition is fitted to the waveform data, requiring an extended
recorded of the reflected laser pulse.

To allow accurate Geo-referencing and evaluation of the geometric quality of the acquired data
sets, a geodetic reference network was established in the study area. Four static GNSS position
observations constitute the basis of the network (Figure 3). The points were observed between
1.5 and 5.5 hours. For post-processing of these long-term GNSS measurements, we used a
local base station in the nearby village of Loosdorf, which led to baselines shorter than 2 km.
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Figure 2: Full-waveform data of the cross-section shown in Figure 4 for the green LIDAR system. Each panel
displays 100 recorded waveforms for different depths of the cross-section, where one sample interval equals
approximately 0.5ns and the amplitude is given in units of the system’s Analog-to-Digital Converter (ADC).

527650 527700 527750 527800
| o

»

k ’ Total station setup point
@ Static GNSS observation point
* Point used in network
- - - Total station observations for network
@ Photogrammetric GCP target (land)
@ Photogrammetric target (submerged)
E Reference planes
O Cross profile point
@ Cross profile DIM plot
© Cross profile LIDAR plot

~— 5340350

5340350

A

“((((f(((ll.‘

5340300

5340250 — 5340250

527650 527700 527750 527800

Figure 3: Overview of the network of reference measurements. The geodetic datum (ETRS89/UTM 33) is
defined by the four GNSS points (green). All photogrammetric Ground Control Points (brown) and river cross
sections (white) were measured from total station network points (red diamond). The river cross sections
marked with blue and orange points are shown in Figures 4 and 8C, respectively.

These four points define the datum of the local realization of ETRS89 (reference epoch: 2015.0,
UTM 33N, EPSG: 25833).



The inner geometry of the network is defined by total station measurements from four positions,
of which two are identical with the GNSS points. A Leica MS60 robotic total station was used
and the local coordinate uncertainties of the fixed network points reach 2 mm in position and
3mm in height after adjustment. Transformation into a global ETRS89/UTM 33 coordinate
system yielded an uncertainty of less than 5mm. Based on the total station network, we
measured photogrammetric targets above and below the water surface, as well as bathymetric
cross sections (cf. 3). These measurements were not included in the network adjustment to
allow maximum accuracy of the inner geometry of the measurements. While the above-water
photogrammetric targets were measured using an accurate mini reflector, the profiles and below-
water targets were measured with a pole and a 360° prism. In addition to the inherent deviations
of 360° prism (about 3mm), the long pole 1.8 m introduces an additional uncertainty because
pole leveling proved difficult in the strong currents of the Pielach River. To increase accuracy,
we repeatedly measured the underwater targets and averaged the measurements. To counteract
the effect of the submersion of the pole tip in the river sediment, a special pole adapter was
used for bathymetric measurements. The adapter is a disk with a diameter of 6 cm instead of
a classic tip at the bottom of the prism pole. However, the effect of the pole tip submersion is
presumably still larger than the uncertainty introduced by the slight inclination of the prism
pole and the prism deviations. Our assessment of the uncertainty of the measurement shows
that, e.g., the bathymetric profiles exhibit a global uncertainty of less than 18 mm for the data
in ETRS89 UTM 33N and a local uncertainty of only 13 mm towards our local realization of
the geodetic network.

The geo-reference for the LiDAR data is established using eight sloped planes set up in the
study area (1 and 3). Similarly to the photogrammetric targets used for geo-referencing
the photogrammetric bundle-block-adjustment, the eight planes are used to transform the
strip-adjusted LiDAR data into our local coordinate system realization. Our investigation
shows that a shift of (—2.2,1.9,3.6)”7 cm was necessary for the miniVUX-3UAV data and of
(—=1.2,1.4,—11.7)" cm for the VQ-840-GL data to transform the data into the coordinate sys-
tem defined by the terrestrial network. With the exception of the rather high vertical correction
necessary for the VQ-840-GL data set, these values lie exactly in the expected uncertainty range
of the GNSS-RTK georeferenced airborne LiDAR data sets.
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Figure 4: Cross-section of a deeper section of the Pielach River. The different panels show the four types of
point cloud data available in this study, near-infrared LiDAR, (NIR) together with the green LiDAR, processed
using online waveform processing (OWP) and the surface-volume-bottom algorithm (SVB).



3. Methods

In this section, we briefly describe the data processing methods employed. We first focus on
a description of the general photogrammetric and LiDAR workflows used to convert the raw
laser and image data to geo-referenced and refraction-corrected 3D point clouds (Sections 3.1
and 3.2). Later, we also describe details of the three conducted experiments, namely deriving
bathymetry from stereo image sequences (Section 3.3), mapping the water surface with oblique
stereo images (Section 3.4), and reconstructing both topography and bathymetry with NeRFs
(Section 3.5).

3.1. LiDAR workflow

The full waveforms of the topo-bathymetric LiDAR sensor introduced in Section 2.2 were pro-
cessed by two different algorithms. While Online Waveform Processing (OWP) (Pfennigbauer
et al., 2014) uses a reduced set of the recorded waveform around signal peaks to extract points
online during flight, the Surface-Volume-Bottom (SVB) algorithm (Schwarz et al., 2019) is
applied in post-processing and aims to extract further data through the application of expo-
nential decomposition (Schwarz et al., 2017) associated with the water column backscattering.
This well-known physical foundation for the interaction of laser pulses with the water column
improves the water surface detection and furthermore is able to capture deeper points than
standard methods. The new points in this method can then furthermore be extended by the
points produced during standard processing (OWP), enhancing the point cloud in turbid or
deep waters. In contrast to that, only OWP was used to process the waveform data of the
topographic data (miniVUX-3AUV).

Geo-referencing and strip adjustment were performed using the method of Glira et al. (2016)
implemented in the scientific laser scanning software OPALS (Pfeifer et al., 2014) for the topo-
bathymetric LIDAR dataset and the holistic approach of Poppl et al. (2024) integrated in
RiPROCESS for the topographic LiDAR dataset. In both cases, the saddle roof reference
surfaces (cf. Figure 1) were used for precise geo-referencing of the point cloud with respect to
the ETRS89 system defined by the terrestrial reference network.

After full-waveform analysis and strip adjustment, refraction correction was performed for all
underwater points of the resulting geo-referenced 3D point cloud. The steps include (i) the
derivation of a gridded water surface model, (ii) the calculation of beam vectors for each laser
point (based on the trajectory) and the final run-time and refraction correction Mandlburger
et al. (2015) implemented in the module Snellius of the OPALS software. The water surface
model was obtained from the water surface reflections of the NIR laser data. Although the
coverage with water surface points was not continuous, any gaps could be filled by interpolation.

3.2. Photogrammetric workflow

The block of nadir and oblique images shown in Figure 1 was processed using a standard
Structure-from-Motion (SfM) workflow. The procedure consists of finding image features in
individual images, matching the features to obtain 3D tie points, and establishing the relative
orientation for all overlapping image pairs. Geo-referencing of the entire image block is done in
a final step by first semi-automatically measuring the GCPs in the images and then performing
the bundle block adjustment Forstner and Wrobel (2016); Kraus (2007) including on-the-job
camera calibration based on all available data (tie points, GCPs). This provides the interior
orientation of the employed DJI Zenmuse P1 camera (principal point, focal length, lens distor-
tion parameters) and the exterior orientations of all captured images (XYZ coordinates of the



projection centers, Omega/Phi/Kappa rotations angles). This is the basis for follow-up pro-
cessing steps like creating a 3D point cloud via Dense Image Matching, as well as orthophoto
and 3D mesh generation. The described procedure was carried out for both the nadir/oblique
Zenmuse P1 images and also for the Sony a6000 images of the miniVUX-3UAV LiDAR survey.

As long as underwater features are visible in the images, a dense reconstruction of the topog-
raphy of the river bottom is possible by first applying standard DIM (Wenzel et al., 2013;
Hirschmuller, 2008). The raw 3D DIM point cloud is too shallow if ray bending at the water
surface is not considered. Refraction correction is achieved by connecting the raw DIM points
with the projection center of the images, from which the point was originally matched. The con-
necting lines constitute the image rays, which can be intersected with the water surface model,
yielding the 3D position where the image ray enters the water column. Based on Snells’ law of
refraction, the direction of the underwater ray can be calculated (Bryant, 1958). This procedure
is repeated for each image ray of a raw 3D point, and then forward intersection is performed for
all underwater rays, producing the refraction-corrected 3D position (Mandlburger, 2019). The
described correction procedure is implemented in the OPALS software (Pfeifer et al., 2014). A
comparable approach is described in Mulsow (2018).

3.3. Bathymetry from image sequences

As described in Section 1, the aim of this experiment is to integrate multiple images of a
sequence showing the same scene and to mitigate the effect of the dynamic, wavy water surface.
During the campaign, several image sequences were acquired from the hovering UAV. In order
to obtain the maximum resolution, the camera was operated in frame image mode rather than
video mode. The DJI Zenmuse P1 camera used can capture image sequences in full resolution
with a frame rate of 0.7 Hz. For each spot, around 100 images were taken with activated motion
compensation via the gimbal. However, the images were slightly moving by up to 30 pixels in
every direction within a sequence.

The first step in the processing pipeline is therefore aligning or co-registering all images to a
single reference frame in the middle of the sequence based on stable features on the river banks.
This is necessary because of the (minor) instability of the hovering UAV during image sequence
acquisition. For that, stable tie points along the river banks were defined in the reference
image. In order to suppress perspective and projective effects on co-registration, only points
close to the water level were chosen. The number of tie points ranges from 20 to 40 points
while a minimum of 4 points is required. Tie points were tracked and measured via Least
Squares Matching (LSM) in all images of the sequence with sub-pixel precision. All images of
a sequence were then aligned with the reference image by applying the best-fitting projective
transformation. In our case, the inner accuracy ranges from 0.05 0.2 pixel.

All co-registered images of a sequence were stacked and handed over for final processing. The
variation of gray values in each pixel position of the sequence is statistically analyzed to find the
representative gray value, which is not affected by the water surface dynamics. So far, empirical
evidence has shown that median filtering is the most effective method to achieve optimal con-
trast and robustness in the resulting image (Mulsow et al., 2024). Thus, the standard strategy
is to apply a median filter to the stacked gray values of each pixel position of the sequence.
Values of 255 (overexposure) are excluded from the median filtering. For pixels showing mainly
overexposed values, the algorithm has to be adapted. In that case, for example, the Minstore
value (smallest pixel value) can be taken for the corrected image. If only fully saturated values
of 255 were captured for one pixel position, the corrected value was interpolated from neigh-
boring pixels. The procedure is then repeated for all images of all individual sequences. Pairs



of integrated stereo-images can then be used as basis for 3D bathymetry reconstruction using
standard multi-media photogrammetry pipelines.

3.4. Water surface from oblique stereo images

The main processing direction is a standard SfM workflow and is performed pairwise with
Agisoft Metashape. The steps are: (i) feature detection on each image and feature matching
between both images, (ii) alignment of the cameras, (iii) geo-referencing using the GCPs and
finally (iv) dense matching. Highly textured and sharp features are required for efficient feature
detection and matching, and since (i) water does not fit these criteria (due to specular reflection
at the water surface), and (ii) our previous studies with lab data have shown the difficulty of
using such a method on water bodies, we are also using deep learning-based solutions. In
particular, we are interested in feature detection and feature matching, for example using
Superpoint (DeTone et al., 2018) and LightGlue (Lindenberger et al., 2023), which have been
shown to provide much higher quantities of valid matches for various data sets with low texture
such as indoor environments. For this, we use the Hierarchical Localization toolbox hloc (Sarlin
et al., 2019), which implements both. A benefit of this toolbox is that it also provides formats
that are compatible with Metashape via Colmap, which means that the tie points and the 3D
model resulting from Colmap can be imported into Metashape. Further analysis and processing
can then be performed, such as outlier removal, scaling, or geo-referencing of the model, and
camera alignment optimization.

3.5. Topography and bathymetry from NeRFs

Neural Radiance Fields (NeRFs) were first introduced in March 2020 (Mildenhall et al., 2021),
Since then, they gained widespread attention and adoption. NeRFs enable the synthesis of
novel scene views by optimizing a continuous volumetric scene function using a given set of
images. A NeRF represents a scene through a fully connected deep neural network based on
5D coordinates (spatial location and a viewing direction) as input, and outputs the volume
density and view-dependent emitted radiance at that point.

The original NeRF algorithm is agnostic with respect to media changes, but different extensions
considering ray refraction have been proposed in the recent past. Our own concept of dealing
with underwater ray refraction for NeRF-based processing based on UAV images (i.e., through-
water close-range bathymetry) is to train separate NeRFs for above and below the water surface
assuming a simple, planar water surface as a starting point. Concepts for further adaptions
include the consideration of slope variations on top of the simple water surface to compensate
for wave effects or even to consider continuous refraction or at least discrete media changes
along the image ray.

For the Pielach image dataset, we generated the NeRF using the Nerfstudio framework, which
provides a simple API to streamline the end-to-end process of creating, training, and testing
NeRFs. The camera orientations form the basis for the creation of the NeRF. In Nerfstudio,

we used the Nerfacto model, specifically the Nerfacto-Huge variant. This method required
approximately 24 GB of GPU VRAM, which was available on our NVIDIA A40 graphics card.

4. Results and Discussions

In this section, we present and briefly discuss the results of the data processing outlined in
Section 3. We first present the topo-bathymetric LIDAR data (Section 4.1) that constitute the
reference for the benchmark data set. Thereafter, we present the results of the classical and
advanced techniques for mapping bathymetry and water surfaces in Sections 4.2 to 4.5.
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4.1. LiDAR data

To evaluate the topographic and topo-bathymetric laser scanning data, each LiDAR point cloud
is compared to the different types of terrestrially measured targets. Here both the absolute
vertical distance to the nearest neighbor of the references was calculated, as well as a normal
plane distance based on the 10 closest neighbors of the reference. For the references acquired
shown in Figure 3, both types of LIDAR data can be compared to checkerboard GCP targets
and saddle roofs. For the NIR point cloud, the deviations between the LiDAR points and the
GCP are mainly smaller than 2 cm for the vertical and normal distances. Abortions for saddle
roofs are comparable with occasionally larger offsets due to rounding effects on the ridge line
of both planes (Figure 5).
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125 M . . Saddle roofs k3 125 7 - F.arlrll: roofs y
10.0 4 i 10.0 1
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Vertical distance [m]: Normal distance [m]:
|LIDAR - References| LiDAR (10 points) - References

Figure 5: Evaluation of the NIR point cloud accuracy for the absolute vertical and normal plane distance for
GCP checkerboard targets and saddle roofs.

For the green LiIDAR point cloud, we evaluated the above- and below-water targets (GCPs,
saddle roofs, submerged checkerboard targets, and river bed points) for the three different
processing methods (OWP, SVB, and a combination of OWP and SVB). The results are shown
in Figure 6. There, a slightly lower accuracy can be observed, which might result from the larger
laser footprint size of the bathymetric sensor. Larger deviations are observed for the SVB on
the land targets (GCPs and saddle roofs), because the algorithm is tailored for bathymetric
waveforms. Therefore, SVB land points can be considered outliers and thus do not reflect
the representative measurement accuracy of the topo-bathymetric system. For all underwater
targets, the accuracy is around +3 cm as can be seen from Figure 6B

Lastly, we assessed the underwater accuracy in more detail by comparing the transects mea-
sured with the total station and the underwater LiDAR point cloud. For all three methods, a
similar absolute vertical distance can be seen in Figure 7 A. For the normal plane distance, the
combined OWP and SVB + OWP data show similar distributions, only SVB shows slightly
wider distributions, translating to slightly higher uncertainties (Figure 7 B).

We can conclude that, with respect to the residual deviations between the underwater LiDAR
points and the terrestrially measured river bed ground truth, the bathymetric LIDAR data set
adheres to the Special Order, the most rigorous standard issued by the International Hydrog-
raphy Organization (IHO, 2008). The deviation between the river bed reference points and the
corresponding bathymetric LiDAR points is 0.5 cm+2 cm.
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Figure 6: Evaluation of the green LiDAR point cloud accuracy for the GCP targets, underwater targets and
saddle roofs (normal plane distance), for the three different processing parameters.

Figure 7: Evaluation of the topo-bathymetric LIDAR point cloud accuracy for the transects measured with the
total station; (A) absolute vertical distance, (B) normal plane distance.
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Figure 8: Results from standard through-water Dense Image Matching; (A) RGB-colored and refraction-
corrected 3D point point cloud obtained from multiple stereo models; (B) Color-coded water depth map superim-
posed with DIM DTM shading, dark/pale: area processed with SURE /Metashape software; (C) Representative
river cross section (original DIM points, DIM DTM, reference measurements); (D) Histogram: Actual-nominal
deviations between reference points and DIM DTM.

4.2. Bathymetry from standard through-water DIM

The results of the standard through-water photo bathymetry pipeline detailed in Section 3.2
are illustrated in Figure 8. For a relatively shallow section of the Pielach River, Figures 8A
and B show the 3D RGB point cloud corrected for refraction obtained from DIM and the hill
shading of a DTM derived from DIM points by median filtering. Superimposed on the shading,
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Figure 8B displays a color-coded water depth map, which reveals depths of 0m to 2m. It can
be clearly seen that the DIM-derived river bed is smooth and consistent up to a water depth of
up to 1.5m, but becomes more noisy in deeper areas. The latter is visible in the deep pool in
the northwest part of the scene. Here, image blurring and the associated loss of texture limit
the achievable penetration depth of photo bathymetry.

For a representative transect, the DIM point cloud corrected for refraction, the final underwater
DTM, and the terrestrially measured reference points are plotted in Figure 8C. The point
cloud (gray points) shows substantial spread underwater because of the shortcomings when
not considering the dynamic, wavy water surface. However, for the shallow cross section shown
(max depth: approx. 1m), the averaged DTM (violet) closely matches the underwater reference
points (black/light gray) measured with the total station. The histogram shown in Figure 8D
confirms the good agreement between the underwater DTM derived from the UAV images
and the reference points with vertical deviations mainly less than 5cm. For all underwater
reference points, the deviations (normal distances) with respect to the DIM-derived DTM
measure Ocm + 4cm. In other words, the underwater DTM is unbiased with an RMSE of
4 cm.

4.8. Bathymetry from image sequences

For the Pielach dataset, the method described in Section 3.3 worked well, and the corrected
image corresponds to an image that would have been taken through a calm flat water surface.
Figure 9 shows the results for the image sequence of a single spot. Figure 9A displays the
reference image, that is, the raw image taken from the middle of the entire sequence. All other
images are co-registered to the reference image based on tie points in the dry or very shallow
zone, which are tracked in all images of the sequence. The reference image and an arbitrary
second image from the sequence are displayed in Figure 9B together with the displacement
vectors, which transform the moving image (cyan) to the reference image (red). After applying
the transformation, the residual deviations in x/y are small with an RMSE of 0.11/0.10 pixel.

The final median filtered image of the sequence is plotted in Figure 9C. Compared to the
original (reference) image, the filtered image appears much smoother, clearer, and sharper in
the river area. The effectiveness of the procedure can best be judged from the small inlet images
showing the submerged checkerboard targets. In the original (reference) image, the targets are
blurred, and they regained their actual sharp black-white edges and sharp geometric features
in the filtered image. In future work, we will use these images for improved underwater stereo
matching.

4.4. Water surface from oblique stereo images

Of the 2165 pairs of images taken from different viewpoints, only 973 could be aligned with
Agisoft Metashape and 1487 with hloc. In addition, no tie point was detected on the water
surface with Agisoft Metashape while hloc had for most pairs around 80 tie points on the water
surface, which already shows a clear difference of performance between these tools. As an
example, Figure 10 shows the results of the feature matching using hloc for pair 583. In this
case, we can see 71 tie points that were found on the water surface. To assess the accuracy of
the water surface tie points detected by deep learning, we used the Digital Water Surface Model
as a reference. The following are the results presented for pair 583, but the same observations
were made for other examples. Since the GCPs are non-coded targets, the comparison of the
tie points with the DEM is not a step that is automatized in the processing workflow, hence
we cannot provide global results.
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Figure 9: Results obtained from image sequence processing; (A) Example image of a sequence (approx. 100
images) captured from one position; (B) Color composite (overlay) of reference (red) and moving image (cyan).
Arrows indicate residuals between reference and fitted tie points after co-registration (RMSE 0.11/0,10 pixel in
x/y); (C) Corrected image with the geometry of an image which would have been taken through a calm flat
water surface. Small image inlets illustrate the de-blurring effect at the checkerboard targets in detail.

visible:42144030 . : visible: 421/4096

Figure 10: Results from the feature detection and matching (by Superpoint and Lighglue). Each point is a
detected feature and the blue points are the matches between both images.
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After importing the tie point cloud from hloc in Agisoft Metashape and geo-referencing it into
our coordinate system, the orientation of the images is estimated via bundle block adjustment.
In this case, the re-projection error was around 3 pixels. In order to obtain a better accuracy,
we have selected three images in addition to our selected pair to add redundancy to the bundle
block adjustment. Since Agisoft Metashape is not able to find many matches, it is critical to
maximize the number of GCPs on all images. With this approach, we were able to obtain an
orientation for our two images of interest with a re-projection error around 0.4 pixels.

After applying the previously estimated camera orientation and geo-referencing the model, the
tie points are compared with the DEM of the water surface. The mean elevation difference
is -6 mm, the median is -8 mm and the standard deviation is 53 mm. The histogram of these
differences is presented in Figure 11. Most tie points are within a distance of 10 cm from the
water surface, below or above. They were estimated from images of a dynamic surface, which
partly explains why the values are dispersed around the mean level of the water surface.

Histogram of Elevation Differences

10 A

Number of tie points

0.00 0.05
Elevation Difference (m)

Figure 11: Elevation differences between the hloc tie points on the water surface and the water surface DEM.

4.5. Topography and bathymetry from NeRFs

Figure 12: Results from NeRF processing; (A) RGB-colored 3D point cloud exported from Nerfstudio; (B)
Synthetic view rendered from the trained NeRF.

The results obtained from the Neural Radiance Field trained with the nadir and oblique images
introduced in Section 2.2 are displayed in Figure 12. The right side (B) shows a synthetic view
of the Pielach dataset rendered from the NeRF inside the Nerfstudio viewer. The current
implementation of the Nerfacto-Huge model assumes a straight image rays when training and
rendering the NeRF. This means that beam refraction at the water-air interface is not considered



so far, neither for training nor for view synthesis. This leads to a sub-optimal representation
of the river bed topography. This in turn affects the resulting 3D point cloud exported from
Nerfstudio. The underwater points is sparse and noisy, and no clear river bottom can be
mapped. In future work, we will first train the NeRF model considering simple and then more
complex water surfaces as outlined in Section 3.5.

5. Conclusions

In this article, we introduced a benchmark dataset for mapping a riffle-pool-type pre-Alpine
gravel bed river with optical bathymetry. The Pielach River has been repeatedly captured for
more than a decade with images and laser scans from crewed or uncrewed aerial platforms.
Following a devastating 300-year flood event in September 2024 (Bloeschl, 2024), we surveyed
a 750 m long section of the river with multi-copter drones on October 24-25, 2024.

We first established a precise geodetic network based on GNSS and total station measurements,
measured ground control points, and saddle-roof shaped reference surfaces on land for precise
geo-referencing of the acquired airborne data. Our reference measurements also included a total
station survey of 13 photogrammetric underwater targets and 19 river cross sections.

The airborne survey consisted of a flight block with nadir and oblique images from a flying
altitude of 80m agl. In addition, we also conducted experiments with a UAV hovering over
certain waypoints taking sequences of 100 images before moving to the next position. In a
separate experiment, we employed two UAVs and took synchronous oblique images of the
water surface. The prior experiment was intended to mitigate the effects of the undulating
water surface for precise bathymetry estimation with stereo images, and the latter experiment
aimed to test the possibility of capturing the 3D shape of the instantaneous water surface
as a prerequisite step for later integrated estimation of both water surface and bottom from
synchronized UAV images. For all image acquisitions, we employed DJI M350 RTK multi-
copter UAV equipped with DJI Zenmuse P1 RGB cameras. With this setup, we obtained a
ground sampling distance of 1cm at a flying altitude of 80 m.

The airborne data acquisition was complemented by topographic and topo-bathymetric flight
missions. The prior served as a basis for capturing the river surroundings, including the alluvial
forest enclosed by the mapped meander of the Pielach River, and for obtaining a precise model
of the water surface needed for refraction correction. However, the main survey was the topo-
bathymetric UAV flight with the RIEGL VQ-840-GL sensor. Due to the clear water, we were
able to fully penetrate the entire river, including approximately 3m deep pools. The final
geo-referenced and refraction-corrected 3D LiDAR point cloud provides a trustworthy areal
reference for various photo bathymetry applications. Compared to the ground truth obtained
from the total station measurements, the residual vertical errors of the bathymetric point cloud
are less than 2 cm.

Next to the standard data processing, we also introduced novel and innovative approaches for
mapping bathymetry and undulating water surfaces in 3D. This was made possible by applying
image sequences instead of single image frames and by synchronous acquisition of oblique stereo
images. As further novelty, we introduced our first ideas for using Neural Radiance Fields for
bathymetry estimation. In future work, we will extend the presented research directions.
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