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 A B S T R A C T

Laser scanners mounted on moving platforms allow for efficient large-scale 3D mapping using light detection 
and ranging (LiDAR). Because the laser scanner is moving with respect to the earth, its trajectory (position and 
orientation over time) must be known in order to georeference the scanner measurements to an earth-fixed 
coordinate system. This is commonly realized through integration with satellite and inertial navigation systems. 
Sensor fusion algorithms, whether filter-based or adjustment-based, then fuse the navigation data to obtain 
an estimate of the platform trajectory. Errors in this trajectory cause errors in the 3D point cloud through 
the georeferencing process. Most processing workflows therefore include a step which optimizes the trajectory 
based on the LiDAR data itself. In this contribution, we focus on two related aspects of trajectory estimation 
and LiDAR georeferencing: Firstly, we analyze the impact of high-frequency trajectory dynamics, which cause 
oscillating errors in the trajectory and negatively impact point cloud precision if the inertial sensors’ sampling 
frequency is too low to properly resolve them. This implies the necessity of recording and processing inertial 
measurements at a sufficiently high frequency, which can drastically increase computational effort of the 
sensor fusion algorithm, especially for adjustment-based approaches. Thus, secondly, we propose a method for 
performing adjustment-based trajectory estimation with high-frequency inertial measurements which efficiently 
uses downsampled low-frequency inertial measurements within the adjustment while recovering the high-
frequency trajectory dynamics from the original measurements. Analysis and processing are performed for two 
separate datasets acquired with two different platforms, a quadcopter uncrewed aerial vehicle (UAV) and a 
crewed fixed-wing aircraft. For the former, we demonstrate through analysis of point spread on planar surfaces 
that a 200Hz sampling frequency for the inertial measurements is insufficient and leads to reduced point 
cloud precision. In both cases, the proposed methodology is shown to precisely recover the high-frequency 
trajectory while drastically reducing memory usage and runtime compared to performing the adjustment with 
the high-frequency inertial measurements.
1. Introduction

Kinematic laser scanning is a widely used surveying technology for 
topographic mapping, specifically for the efficient acquisition of large-
scale 3D point clouds. In kinematic laser scanning, a laser scanner is 
mounted on a moving platform such as a land vehicle, drone or aircraft. 
The laser scanner makes use of light detection and ranging (LiDAR) 
together with a scanning mechanism which varies the deflection angle 
and thereby the direction of the laser beam. In combination with 
the motion of the carrier platform, this enables 3D sampling of the 
environment. The laser scanner thus measures the range to the target 
and the angle of the laser beam. In a first step, these polar coordinates 
are converted to Cartesian coordinates, which are still relative to the 
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scanner itself. Georeferencing is then the process of transforming the 
measurements from the laser scanner’s coordinate system to an earth-
referenced coordinate system. For this, the platform’s trajectory, its 
position and orientation over time, must be known. Commonly, a global 
navigation satellite system (GNSS) receiver and antenna, and an inertial 
measurement unit (IMU) are mounted on the platform together with 
the laser scanner. GNSS, IMU, and the laser scanner itself operate with 
different measurement frequencies (i.e., at different temporal scales). 
While GNSS provides long-term absolute positioning, usually at a rate 
of 1-10Hz, the IMU is responsible for short-term relative orientation 
and outputs measurements between about 100 and 1000Hz. High-
end survey-grade LiDAR systems output individual measurements at 
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Fig. 1. Common ranges for the measurement frequencies of GNSS, IMU and LiDAR as 
part of a laser scanning system.

very high rates, commonly between 100 kHz and 3MHz for single-
channel devices (Fig.  1). The platform’s trajectory is estimated by fusing 
absolute position information from GNSS with measurements of linear 
acceleration and angular velocity from the IMU. However, errors in 
GNSS and IMU measurements cause errors in the trajectory, which in 
turn cause errors in the georeferenced point cloud. In this context, 
we categorize trajectory errors as low-frequency and high-frequency, 
with low-frequency corresponding roughly to the frequency domain 
of the GNSS, and referring to anything above as high-frequency. Low-
frequency trajectory errors cause slowly varying deformations in the 
point clouds, which manifest, e.g., as discrepancies between overlap-
ping flight strips. High-frequency trajectory errors on the other hand 
impact the point cloud on smaller time scales, creating wave-like 
artifacts in the point clouds and generally increasing point spread and 
reducing precision.

The industry-standard processing workflow for kinematic laser scan-
ning involves first estimating the trajectory using a Kalman filter, 
and then correcting low-frequency trajectory errors in a subsequent 
strip adjustment (e.g., Glira et al. (2016) and Jonassen et al. (2023)). 
Lately, holistic methods have been proposed based on batch non-
linear least-squares (NLS) adjustment, which integrate the laser scanner 
measurements into the trajectory estimation (Brun et al., 2022; Pöppl 
et al., 2024). Such methods are the main focus of this article, as the 
tight coupling between IMU and LiDAR is integral in reducing both 
low-frequency and high-frequency errors. However, the observations 
regarding vibrations and IMU sampling rate apply in general to inertial 
navigation and thus also to other sensor fusion approaches, such as 
Kalman filters.

1.1. Inertial navigation and vibrations

There are a number of factors related to inertial navigation which 
influence trajectory quality (Farrell, 2008, Ch. 11), whether in stan-
dalone inertial navigation or when fused with other sensors. Many 
deterministic errors, such as constant offsets or output scale errors can 
be determined in a laboratory calibration and corrected for, taking into 
account various factors such as deformation of the material casing or 
sensors themselves due to temperature changes. On the other hand, 
stochastic errors such as measurement noise or bias drift cannot be 
pre-calibrated and can only be compensated in-run by integration 
with other sensor data (Farrell et al., 2022). Statistical models for the 
stochastic processes are derived from specific calibration procedures 
and used to improve the in-run estimation of the stochastic error 
components.

Many errors in inertial sensors and subsequently the inertial nav-
igation system (INS) output are caused or amplified by the presence 
of vibrations (Groves, 2013, Ch. 4). The most critical type of error is 
the vibration rectification error (VRE), a systematic measurement error 
which depends on the frequency of the sensed signal. The underlying 
physical principles causing this error depend on the sensor’s operating 
principle and its implementation.

Generally, the magnitude of acceleration and angular velocity due 
to vibrations adds to that of the underlying platform motion. Since 
accelerometers and gyroscopes can only output measurements in a cer-
tain range, values outside the measurement range are clipped. Strong 
vibrations may therefore cause the measurement range to be exceeded, 
even if the actual motion of the platform is within the specified range 
of the sensor. As vibration often exceeds platform motion in terms of 
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maximum signal amplitude, it may also implicitly cause errors which 
would otherwise be invisible, e.g., non-linearity errors occurring only 
at large signal magnitudes.

In kinematic laser scanning, the inertial measurement unit is
mounted rigidly with respect to the laser scanner itself and the GNSS 
antenna1. In practice, the different components will not always be 
completely rigid and vibration will lead to a time-varying relative 
orientation thus breaking the assumption of rigidity.

As these vibration-related errors are generally hard to calibrate 
for and cannot be reliably compensated in-run, most IMU/INS man-
ufacturers recommend keeping vibrations as low as possible through 
mechanical means (e.g., Hexagon (2023), SBG Systems (2024)). Use of 
appropriate materials and dampening (Periu et al., 2013; Li et al., 2015; 
Liu et al., 2024) can reduce vibrations and their impact on the payload 
sensors, but this is not always practically possible due to constraints in 
size or weight.

From a theoretical standpoint, it is clear that insufficiently high 
sampling frequency causes a mismatch between the continuous physical 
quantity and its measured discrete representation. According to the 
Nyquist theorem, a signal can be represented without aliasing error 
if and only if the sampling frequency is at least twice the highest 
frequency of the signal. In other words, sampling with a frequency of 
[𝑁] Hz only allows resolving signal components with frequency below 
[𝑁2 ] Hz, with aliasing effects occurring for signal components of higher 
frequencies. Most higher-frequency acceleration or angular velocity 
is caused by vibrations (i.e., periodic oscillating motion, [≳ 10] Hz) 
either of the carrier platform (e.g., UAV rotors) or the scanner system 
itself (e.g., rotation of scanning mirror). In the worst case, aliasing 
causes a periodic motion with zero mean (i.e., stationary on average) 
to look like a time-varying bias error which in turn compounds into 
position and orientation errors within strap-down inertial navigation. 
As most IMUs internally sample higher than the output frequency, the 
output is usually anti-aliased thereby mitigating this error. However, 
the higher-frequency components are now removed from the signal and 
thus missing from the estimated trajectory.

The errors induced by aliasing or low-pass filtering, i.e., insufficient 
sampling rate in the presence of vibrations, are often only viewed 
in the context of overall navigation performance. For most applica-
tions, the high-frequency trajectory components are unimportant as 
long as the overall navigation performance (i.e., the low-frequency 
trajectory components) are not negatively affected by the vibration. 
Thus, vibrations are often viewed as undesirable noise and filtered 
out from the signal (e.g., Alam and Rohac (2015), Suwandi et al. 
(2019) and Li et al. (2024)). However, removing the vibrations from 
the inertial measurements and thus from the trajectory is not desirable 
for kinematic laser scanning, where any unresolved vibration translates 
into trajectory errors that in turn cause errors in the georeferenced 
point cloud.

In Wei and Li (2022), the authors investigate effects of GNSS and 
IMU sampling rate on the trajectory estimated via GNSS/IMU Kalman 
filter, and find that a reduced IMU sampling rate has a measurable 
but small negative impact on the positioning accuracy. However, ori-
entation accuracy is not evaluated, which is arguably more important 
in the context of kinematic laser scanning. Vibration-induced errors 
in the orientation or boresight are addressed in Ma and Wu (2012), 
who simulate and analyze the impact of oscillating orientation errors 
on the point cloud. Schlager et al. (2022) investigate an automotive 
LiDAR sensor with an internal IMU and find that its 50Hz sampling 
rate is insufficient if higher-frequency vibrations are present, which 
may occur in normal use-cases such as the vehicle traveling over 
rough asphalt or gravel. The magnitude of such errors depends on the 

1 In airborne laser scanning, gyro-stabilization mounts (GSM) are used to help 
keep the system leveled. In this case, the GNSS antenna is not rigid w.r.t. the 
IMU, but the relative orientation is measured by the GSM itself.
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sensors used, the mounting of these sensors with respect to the carrier 
platform, the motion of the carrier platform and the frequency of the 
vibrations. As such, the values reported in the specific studies are hard 
to generalize. Nevertheless, different studies have analyzed vibration-
related effects and found them to be of significance for kinematic LiDAR 
applications. However, little literature is available analyzing the effects 
of vibrations for commonly-used survey-grade laser scanning systems, 
in particular airborne laser scanning with uncrewed aerial vehicles 
(UAVs) or crewed aircraft.

In this article, we attempt to close these gaps and analyze platform 
dynamics of two airborne laser scanning platforms, a remotely piloted 
quadcopter and a crewed fixed-wing survey aircraft, with the goal of 
quantifying and mitigating the impact of vibrations on point cloud 
precision. Our analysis shows that in the presence of strong vibrations, 
a sampling rate of 200Hz or less leads to reduced precision of the 
point cloud. However, a higher sampling rate would imply significantly 
higher computational effort for the trajectory processing. This is espe-
cially the case for tightly-coupled IMU/LiDAR integration approaches 
which have become popular both in robotics and in photogrammetry. 
For this reason, we suggest the use of downsampled IMU measurements 
within the NLS adjustment but to recover the high-frequency trajectory 
afterwards, ensuring that all vibrations present in the original high-
rate inertial measurements are properly resolved but at the same time 
computational effort remains reasonable.

1.2. Downsampling and pre-integration

Downsampling is a common way to reduce computational load 
in strap-down inertial navigation by reducing the measurement rate. 
For GNSS/IMU integration based on Kalman filtering, it is common 
to run the processing at two distinct temporal resolutions (Al-Jlailaty 
and Mansour, 2021): At a high rate, inertial measurements are read 
from the underlying sensor, suitably aggregated, and passed on to the 
filter itself2. Then, the filter itself runs at a lower rate using these 
aggregated (in other words, downsampled) measurements. Due to the 
inherent nonlinearity of the strap-down navigation equations, care has 
to be taken to avoid introducing errors through this process. Savage 
(1998a,b) provide equations for coning and sculling corrections, which 
have been widely used since. More recently, the similar concept of
IMU pre-integration (Lupton and Sukkarieh, 2009) has found widespread 
use in robotics (Le Gentil and Vidal-Calleja, 2021). Here, the non-
linear manifold structure of the inertial measurements is taken into 
account when performing the pre-integration. In the context of simul-
taneous localization and mapping (SLAM), the IMU measurements are 
pre-integrated in-between poses, thus reducing the number of parame-
ters and observations in the SLAM problem and therefore drastically 
increasing computational efficiency. The use of IMU pre-integration 
for dynamic networks (Rouzaud and Skaloud, 2011), a type of least-
squares adjustment, is investigated in Cucci and Skaloud (2019). There, 
performance benefits and also better numerical stability for the pre-
integrated measurements are confirmed through simulation. However, 
accuracy deteriorates as more measurements are pre-integrated into 
one: the frequency of the pre-integrated measurements decreases and 
the IMU biases become harder to estimate accurately. Because IMU 
pre-integration inherently reduces the measurement rate, the issue of 
aliasing or signal cut-off, discussed in  Section 1.1, is also relevant 
here. If higher-frequency components are present in the actual plat-
form motion, these cannot be recovered from lower-frequency IMU 
measurements (whether downsampled or pre-integrated) and cannot be 
represented by a lower-frequency trajectory.

To address these two issues related to IMU downsampling,

. unresolved high-frequency signal components and

2 This is often realized inside the sensor hardware, with the high-frequency 
measurements inaccessible to the user.
346 
. decreased accuracy due to difficulties estimating biases,

we propose a two-stage strategy for incorporating downsampled inertial 
measurements in an NLS adjustment-based trajectory estimation. First, 
the trajectory is modeled as a combination of high-frequency and low-
frequency parts, where the low-frequency part is estimated as part 
of the NLS adjustment, and the high-frequency part is reconstructed 
directly from the high-frequency measurements. Then, to improve the 
accuracy of the estimated IMU biases and to allow for modeling ad-
ditional types of IMU errors (especially scale factors), we iterate the 
downsampling of the IMU measurements as better estimates of the IMU 
errors become available. In this way, we avoid having to propagate 
IMU errors and noise through the measurement equations. Specifi-
cally, we do not modify any measurement equations, which means 
the proposed strategy can be realized on top of existing NLS-based 
GNSS/IMU/LiDAR-integration algorithms. However, it makes use of 
the original high-frequency measurements and is thus not applicable 
if the downsampling is already performed within the inertial sensor 
during data acquisition. While this strategy is simple, it is shown to 
be effective, as it is both efficient and precise. This is demonstrated on 
real-world data.

1.3. Main contributions

In summary, the main contributions of this article are (1) analysis of 
platform dynamics for two representative airborne laser scanning plat-
forms based on in-flight inertial measurements together with a heuristic 
quantification of errors caused by vibrations with frequencies exceeding 
the IMU measurements’ Nyquist rate, and (2) a strategy for efficiently 
processing high-rate IMU measurements in the context of trajectory 
estimation via batch non-linear least-squares (NLS) adjustment. The 
methodology is demonstrated and evaluated in detail for an uncrewed 
laser scanning (ULS) and a (crewed) airborne laser scanning (ALS) 
dataset.

Background and theoretical considerations for the analysis of the 
inertial measurements and platform dynamics are given in  Section 2. 
The methodology for the downsampling of the IMU measurements, 
and the strategy for integrating them in the NLS trajectory estimation 
is described in  Section 3. Then, real-world data is processed and 
thoroughly analyzed in  Section 4. Lastly,  Section 5 discusses the 
results and gives an outlook on further investigations.

2. Trajectory dynamics

Before describing the downsampling and sensor fusion methodol-
ogy, we provide a motivating example and introduce simple tools for 
analyzing the dynamics that the platform and sensor assembly are sub-
jected to. In short, we examine the high-rate inertial measurements in 
the frequency domain in order to determine the presence of vibrations 
and to predict the magnitude of trajectory errors resulting from aliasing 
or signal-cutoff.

2.1. Motivating example and theoretical background

Consider as an example a sinusoidal signal made up of three com-
ponents

𝑠(𝑡) = 0.25 sin( 50 ⋅ 2𝜋 𝑡) (2.1)

+ 0.1 sin(120 ⋅ 2𝜋 𝑡) (2.2)

+ 0.01 sin(310 ⋅ 2𝜋 𝑡). (2.3)

The ideal signal is sampled at 800Hz with random white measure-
ment noise (Fig.  2). Additionally, the 800Hz signal is decimated by 
a factor of 4, simply by averaging 4 consecutive samples. Lastly, the 
800Hz signal is first passed through an anti-aliasing (low-pass) filter, 
and then decimated as before. This example aims to demonstrate the 
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Fig. 2. Example signal with frequency components 50Hz, 120Hz, and 310Hz. The 
ideal signal is tainted by additive white noise and sampled at 800Hz, which is then 
decimated with and without anti-aliasing to 200Hz.

Fig. 3. Spectrum of the example signal 𝑠, idealized (black), obtained by discrete Fourier 
transform from the 800Hz signal (blue) and from the decimated 200Hz signals with 
(orange) and without (red) anti-aliasing. The 𝑦-axis shows the linear magnitude |𝐴(𝜈)|
for the complex Fourier coefficient 𝐴(𝜈) ∈ C at frequency 𝜈.

effect of the downsampling when signal frequencies larger than the 
Nyquist rate are present. This somewhat mirrors the internal processing 
of IMUs, albeit only with linear averaging and for one axis, thereby 
disregarding the topic of coning and sculling (Savage, 1998a,b).

Fig.  3 shows the spectrum of the example signal. Both the the-
oretical/ideal spectrum and the actual 800Hz signal spectrum show 
the three frequency peaks and the white noise. The 200Hz decimated 
signal spectrum is cut off at 100Hz, half the sampling rate. The 120Hz 
and 310Hz signal are aliased and now appear at 80Hz and 90Hz, 
respectively. For the anti-aliased signal, which is first low-pass filtered 
and then decimated, the incorrect 90Hz peak disappears completely. 
Note that the incorrect 80Hz is still visible but with reduced amplitude; 
in practice the filter response is never a perfect ‘brick wall’.

As the exact mode of rate-reduction for specific IMUs differs or 
is not even disclosed to the user, we cannot exactly reproduce the 
inner workings of any given IMU. However, we expect that some 
form of anti-aliasing (and, for higher-end IMUs possibly also coning 
and sculling corrections) are applied, even if the details (e.g., filter 
characteristics) are unknown. Thus for our analysis, we focus on the 
case of a downsampled but anti-aliased signal, no matter whether the 
downsampling is performed in real-time on-board the sensor or in 
post-processing (similar to pre-integration).

2.2. A-prior error estimates

To obtain a heuristic for the expected trajectory error due to unre-
solved vibrations, consider a signal 𝑠(𝑡) with period 𝑇  on the interval 
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[0, 𝑇 ], reconstructed from 𝜈𝑠 = 800Hz samples. We write 𝑠(𝑡) as its 
Fourier sum and split it into low-frequency and high-frequency parts 

𝑠(𝑡) =
∑

|𝜈|≤ 𝜈𝑠
2

𝐴(𝜈) 𝑒2𝜋𝑖𝜈𝑡

=
∑

|𝜈|≤ 𝜈𝑐
2

𝐴(𝜈) 𝑒2𝜋𝑖𝜈𝑡 +
∑

𝜈𝑐
2 <|𝜈|≤ 𝜈𝑠

2

𝐴(𝜈) 𝑒2𝜋𝑖𝜈𝑡,
(2.4)

where 𝜈 = 𝑘
𝑇 , 𝑘 = 0,±1,±2,…  and 𝜈𝑐 is the reduced sampling frequency. 

If the original signal 𝑠(𝑡) is anti-aliased with an ideal low-pass filter and 
decimated to [𝜈𝑐] Hz, the low-frequency signal’s spectrum is cut off at 
[ 𝜈𝑐2 ] Hz, i.e., 

𝑠LF(𝑡) =
∑

|𝜈|≤ 𝜈𝑐
2

𝐴(𝜈) 𝑒2𝜋𝑖𝜈𝑡. (2.5)

Consider now the angular velocity measurements 𝑤(𝑡) of a single gy-
roscope as the signal. Assuming rotation is only present around that 
axis, the angle 𝜃 is simply the integral of the angular velocity 𝜃(𝑡) =
∫ 𝑡
0 𝜔(𝜏)d𝜏. Thus, the root mean square (RMS) error in the interval [0, 𝑇 ]
of 𝜃LF, incurred by the lower sampling rate, is
RMS

(

𝜃 − 𝜃LF
)

(2.6)

=

√

1
𝑇 ∫

𝑇

0

(

∫

𝑡

0
𝜔(𝜏) − 𝜔LF(𝜏) d𝜏

)2

d𝑡 (2.7)

=

√

√

√

√

√

√

1
𝑇 ∫

𝑇

0

⎛

⎜

⎜

⎝

∑

|𝜈|> 𝜈𝑐
2

∫

𝑡

0
𝐴𝜔(𝜈)𝑒2𝜋𝑖𝜈𝜏 d𝜏

⎞

⎟

⎟

⎠

2

d𝑡 (2.8)

=

√

√

√

√

√

∑

|𝜈|> 𝜈𝑐
2

(

|𝐴𝜔(𝜈)|
2𝜋𝜈

)2
, (2.9)

which can be computed from the Fourier coefficients 𝐴𝜔(𝜈) of 𝜔(𝑡). It 
can be seen directly from Eq.  (2.9) that for the same signal amplitude, 
the orientation error is proportional to the inverse of the respective 
frequency.

Note that when the vibrations are concentrated in one frequency, 
the peak error is related to the RMS error by 
max
𝑡∈[0,𝑇 ]

|𝜃(𝑡) − 𝜃LF(𝑡)| =
√

2RMS
(

𝜃 − 𝜃LF
)

. (2.10)

A similar metric can be derived for the position, integrating the ac-
celerometer signal 𝑓 (𝑡) twice to obtain the position 𝑝(𝑡) = ∬ 𝑡

0 𝑓 (𝜏)d𝜏. 
The corresponding RMS error of the position 𝑝LF derived from down-
sampled accelerations 𝑓LF is then given by 

RMS
(

𝑝 − 𝑝LF
)

=

√

√

√

√

√

∑

|𝜈|> 𝜈𝑐
2

(

|𝐴𝑓 (𝜈)|

(2𝜋𝜈)2

)2

. (2.11)

In this case, the error for a given amplitude is proportional to the 
squared inverse of the respective frequency.

Eqs. (2.9) and (2.11) allow us to make a heuristic a-priori prediction 
of the trajectory errors induced by cutting off the high-frequency signal 
components (i.e., vibrations) in the case of downsampling with anti-
aliasing. This prediction, based only on the simplified 1D case of 
strap-down inertial navigation, is independent of the actual sensor fu-
sion methodology. In our specific case, it will be experimentally verified 
by comparing it with the results of NLS-based trajectory estimation.

3. Trajectory estimation

The trajectory estimation approach used here, based on non-linear 
least-square estimation, is described in detail in Pöppl et al. (2024). In 
the following, a short overview of this methodology is given, followed 
by a more detailed description of the downsampling itself and the 
integration of downsampled inertial measurements in the trajectory 
estimation.
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3.1. Non-linear least-squares trajectory estimation

At the core, NLS estimation involves finding unknown parameters 𝒙
by minimizing the difference between the functional model 𝒚𝑖 ∶= 𝑓𝑖(𝒙)
and observations ̃𝒚𝑖 of the true values 𝒚𝑖
𝒚𝑖 = 𝒚𝑖 + 𝝐𝑖

= 𝑓𝑖(𝒙) + 𝝐𝑖,

with 𝝐𝑖 ∼ 𝑁(𝟎,𝜮𝑖), 1 ≤ 𝑖 ≤ 𝑛,

(3.1)

where the measurements 𝒚𝑖 are tainted by the additive zero-mean 
Gaussian noise 𝝐𝑖.

The NLS estimate 𝒙∗ of the parameters 𝒙 is then obtained by 
minimizing the sum of squared residuals

𝒙∗ = argmin
𝒙

𝑛
∑

𝑖=0

𝑚𝑖
∑

𝑗=0
𝜌(𝑟2𝑖,𝑗 ), (3.2)

with 𝒓𝑖 ∶=𝜮
− 1

2
𝑖 (𝒚𝑖 − 𝑓𝑖(𝒙)) ∈ R𝑚𝑖 , (3.3)

where 𝜌 ∶ [0,∞) → [0,∞) is a suitable loss function. In our case, this is 
either the standard linear loss 𝜌(𝑟) = 𝑟 or the robust Huber loss (Huber, 
1964).
The residuals include four main types:

• Priors, which encode a-priori information about the stochastic prop-
erties of some parameters. IMU bias and scale factors are mod-
eled stochastically as Gauss–Markov processes and functionally as 
time-varying (using linear splines).

• IMU gyroscope and accelerometer observations, derived from the 
standard strap-down inertial navigation equations.

• GNSS position observations describing the discrepancy between the 
modeled position of the GNSS antenna and the measured GNSS po-
sition as provided by external GNSS processing. Due to the presence 
of outliers, the Huber loss is used for the GNSS residuals.

• LiDAR observations describing the discrepancies between multiple 
scans of the same object. In our case, planes are extracted from the 
point clouds. The observed planes are then matched and merged 
into one modeled plane, for which three parameters (offset and two 
slopes) are explicitly estimated. LiDAR boresight misalignment can 
also be modeled and estimated if necessary. As the matching of 
corresponding planes may fail causing gross errors, the Huber loss 
is also used for the LiDAR residuals.

All GNSS, IMU and LiDAR observations depend on position and 
orientation at specific points in time. The trajectory itself is modeled 
using splines, with spline nodes set for each IMU sample time. The 
IMU measurement equations are discussed further in  Section 3.2. The 
other measurement equations and the LiDAR plane extraction are the 
same as in Pöppl et al. (2024), only the representation of the trajectory 
differs. Here, Hermite splines are used instead of B-Splines for modeling 
the trajectory (see Section 3.4). In contrast to B-Splines, the Hermite 
spline coefficients are equivalent to the spline function value at the 
corresponding node, thus simplifying the construction of interpolatory 
splines for given function values.

Since the least-squares optimization is non-linear, suitable starting 
values for the parameters 𝒙, especially the trajectory, are required. 
For this reason, the optimization is first performed incrementally in a 
sliding-window mode, with a window of length 60 s. The full processing 
workflow then includes the following steps (Fig.  4):

. Sliding-window NLS optimization with GNSS and IMU observations 
to obtain an initial trajectory.

. Batch optimization with GNSS and IMU observations, starting from 
the sliding-window trajectory.

. Preliminary georeferencing of the LiDAR point cloud with the
GNSS/IMU trajectory.
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Fig. 4. Trajectory estimation workflow from Pöppl et al. (2024).

. Extraction and matching of planar features from the preliminary 
LiDAR point cloud.

. Batch optimization with GNSS, IMU and LiDAR observations.

. Final georeferencing of the LIDAR point cloud with the
GNSS/IMU/LiDAR trajectory.

3.2. Inertial measurement equations

The inertial sensors, accelerometer and gyroscope, measure respec-
tively specific force and angular velocity of the body frame (i.e., the 
sensor assembly) with respect to an inertial frame. The trajectory itself 
is modeled with respect to an earth-fixed frame, and the point cloud is 
then derived from scanner measurements and the trajectory, and there-
fore also referenced to the earth-fixed frame. Specifically, the three 
Cartesian coordinate systems relevant for the inertial measurements are

. the 𝑒-system, the standard earth-centered earth-fixed (ECEF) coordi-
nate system,

. the 𝑖-system, the standard earth-centered inertial (ECI) coordinate 
system, which rotates with respect to the 𝑒-system around their 
common 𝑧-axis, and

. the 𝑏-system, with origin in the IMU center and axes derived from 
the carrier platform (front, right, down).

We keep with the notation of Pöppl et al. (2024), which itself fol-
lows Groves (2013): 𝒙𝛾𝛽𝛼 refers to a property of frame 𝛼 w.r.t. frame 
𝛽 resolved in frame 𝛾, and 𝑹𝛽

𝛼 denotes the rotation from 𝛼-frame to the 
𝛽-frame. For example, 𝒙𝑒𝑒𝑏 and 𝒙̇𝑒𝑒𝑏 denote position and velocity of the 
𝑏-system with respect to and resolved in the 𝑒-system, whereas 𝑹𝑏

𝑒 is 
the rotation from 𝑒-system to 𝑏-system.

The IMU outputs measurements at times 𝑡𝑘 ∈ [0, 𝑇 ], 1 ≤ 𝑘 ≤
𝑛. We interpret these measurements as incremental, i.e., 𝛥𝒗 and 𝛥𝜽
measurements, which correspond to the increment in velocity and 
orientation between two sample times 𝑡𝑘−1 and 𝑡𝑘 = 𝑡𝑘−1 + 𝛥𝑡𝑘

𝛥𝜽𝑏𝑖𝑏(𝑡𝑘−1, 𝑡𝑘) = log(𝑹𝑏
𝑖 (𝑡𝑘−1)𝑹

𝑖
𝑏(𝑡𝑘)) (3.4)

= log
(

𝑹𝑏
𝑒(𝑡𝑘−1) exp

(

𝝎𝑒
𝑖𝑒𝛥𝑡𝑘

)

𝑹𝑒
𝑏(𝑡𝑘)

)

, (3.5)

𝛥𝒗𝑏𝑖𝑏(𝑡𝑘−1, 𝑡𝑘) = 𝑹𝑏
𝑖 (𝑡𝑘−1)

(

𝒙̇𝑖𝑖𝑏(𝑡𝑘) − 𝒙̇𝑖𝑖𝑏(𝑡𝑘−1)
𝑖 ) (3.6)
−𝛥𝑡𝑘𝛾𝑖𝑏(𝑡𝑘−1)
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Fig. 5. Illustration of the high-rate and low-rate sample intervals and corresponding 
increments.

= 𝑹𝑏
𝑒(𝑡𝑘−1)

(

𝒙̇𝑒𝑒𝑏(𝑡𝑘) − 𝒙̇𝑒𝑒𝑏(𝑡𝑘−1) (3.7)

+ 𝛥𝑡𝑘
(

[

𝝎𝑒
𝑖𝑒
]2
∧ 𝒙

𝑒
𝑒𝑏(𝑡𝑘−1)

+ 2
[

𝝎𝑒
𝑖𝑒
]

∧ 𝒙̇
𝑒
𝑒𝑏(𝑡𝑘−1)

− 𝜸𝑒𝑖𝑏(𝑡𝑘−1)
))

,

where 𝝎𝑒
𝑖𝑒 is the earth’s angular velocity and 𝜸𝑒𝑖𝑏 is the acceleration due 

to gravitational force3. The functions log and exp are the SO(3) Lie-
group logarithm and exponential, which map between an 3D axis-angle 
vector and the corresponding rotation matrix, with R3×3 interpreted 
as subset of SO(3). The hat operator [ ⋅ ]∧ maps a vector to the skew 
symmetric cross-product matrix, so that [𝒙]∧ 𝒚 = 𝒙 × 𝒚.

The inertial measurement equations are simpler when specified with 
respect to the 𝑖-system (Eqs.  (3.4) and (3.6)), but are reformulated here 
with respect to the 𝑒-system (Eqs.  (3.5) and (3.7)) as this is what both 
trajectory and point cloud are referenced to.

3.3. Downsampling of the inertial measurements

The strategy with which inertial measurements are downsampled 
(in other words, aggregated) can be seen as a simple averaging, but 
averaging in a way that respects the Lie-group structure of SO(3), 
and takes into account the dependence of acceleration on the current 
orientation. This is essentially the same as used in the on-manifold pre-
integration strategy introduced in Forster et al. (2015), except that we 
do not aim to propagate IMU noise and biases through the integration. 
Also, we do not pre-integrate in-between specific keyframes, but rather 
always aggregate 𝑑 subsequent samples, thereby effectively reducing 
the sampling frequency from 𝜈𝑠 to 𝜈𝑐 = 𝜈𝑠

𝑑  and the number of samples 
from 𝑛 to ⌊ 𝑛

𝑑 ⌋.
For the original ‘high-frequency’ measurements, the lower-case in-

dex 𝑘 is used, while the downsampled ‘lower-frequency’ measurements 
are indexed with upper-case 𝐾

𝑘 ∈{1,… , 𝑛}, 𝐾 ∈ {1,… , 𝑁}, 𝑁 ∶=
⌊ 𝑛
𝑑

⌋

. (3.8)

To simplify notation, the coordinate systems are omitted as they are 
always the same, and the index now refers to the sample interval 
𝛥𝜽𝑘 ∶= 𝛥𝜽𝑏𝑖𝑏(𝑡𝑘−1, 𝑡𝑘),

𝛥𝒗𝑘 ∶= 𝛥𝒗𝑏𝑖𝑏(𝑡𝑘−1, 𝑡𝑘),  and 
(3.9)

𝛥𝜽𝐾 ∶= 𝛥𝜽𝑏𝑖𝑏(𝑡𝑑(𝐾−1), 𝑡𝑑𝐾 ),

𝛥𝒗𝐾 ∶= 𝛥𝒗𝑏𝑖𝑏(𝑡𝑑(𝐾−1), 𝑡𝑑𝐾 ).
(3.10)

These 𝛥𝜽 and 𝛥𝒗 values will later take the role of the measure-
ments 𝒚 in the NLS adjustment (Eqs. (3.1) and (3.2)). The aggre-
gated low-frequency incremental measurements for the sample times 
𝑡𝐾−1 ∶= 𝑡𝑑(𝐾−1) and 𝑡𝐾 ∶= 𝑡𝑑𝐾 = 𝑡𝐾−1 + 𝛥𝑡𝐾 (see Fig.  5) are derived 

3 Gravitational acceleration is derived using the ellipsoidal gravity model 
from Groves (2013, Ch.2).
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from the high-frequency incremental measurements by substituting the 
low-frequency sample intervals [𝑡𝐾−1, 𝑡𝐾 ] into Eqs. (3.4) and (3.6), 
yielding

𝛥𝜽𝐾
(3.4)
= log

(

𝑹𝑏
𝑖 (𝑡𝑑(𝐾−1))𝑹𝑖

𝑏(𝑡𝑑𝐾 )
)

(3.11)

= log
𝑑
∏

𝑗=1
𝑹𝑏

𝑖 (𝑡𝑑(𝐾−1)+𝑗−1)𝑹𝑖
𝑏(𝑡𝑑(𝐾−1)+𝑗 ) (3.12)

(3.4)
= log

𝑑
∏

𝑗=1
exp

(

𝛥𝜽𝑑(𝐾−1)+𝑗
)

, (3.13)

𝛥𝒗𝐾
(3.6)
= 𝑹𝑏

𝑖 (𝑡𝑑(𝐾−1))
(

𝒙̇𝑖𝑖𝑏(𝑡𝑑𝐾 )− (3.14)
𝒙̇𝑖𝑖𝑏(𝑡𝑑(𝐾−1))

− 𝛥𝑡𝐾 𝛾 𝑖𝑖𝑏(𝑡𝑑(𝐾−1))
)

≈ 𝑹𝑏
𝑖 (𝑡𝑑(𝐾−1))

𝑑
∑

𝑗=1

(

𝒙̇𝑖𝑖𝑏(𝑡𝑑(𝐾−1)+𝑗 ) (3.15)

− 𝒙̇𝑖𝑖𝑏(𝑡𝑑(𝐾−1)+𝑗−1)

− 𝛥𝑡(𝑑(𝐾−1)+𝑗)

⋅ 𝛾 𝑖𝑖𝑏(𝑡𝑑(𝐾−1)+𝑗−1)
)

(3.6)
=

𝑑
∑

𝑗=1

𝑗−1
∏

𝓁=1
exp

(

𝛥𝜽𝑑(𝐾−1)+𝓁
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑹𝑏
𝑖 (𝑡𝑑(𝐾−1))𝑹𝑖

𝑏(𝑡𝑑(𝐾−1)+𝑗−1)

𝛥𝒗𝑑(𝐾−1)+𝑗 (3.16)

The approximation in Eq.  (3.16) is due to using the gravitational 
acceleration 𝛾 𝑖𝑖𝑏 at times 𝑡𝑑(𝐾−1)+𝑗−1, 𝑡𝑑(𝐾−1)+𝑗 ,…  instead of 𝛾 𝑖𝑖𝑏(𝑡𝑑(𝐾−1)). 
Since the gravitational acceleration varies slowly, this is not an issue in 
practice.

3.4. Trajectory upsampling

The aggregated low-frequency measurements 𝛥𝜽𝐾 and 𝛥𝒗𝐾 corre-
spond precisely to the same underlying measurement equations as the 
high-frequency measurements 𝛥𝜽𝑘 and 𝛥𝒗𝑘 in Eqs. (3.4) and (3.6), 
except for larger time intervals. Thus, if we were interested only in 
determining the position at those large time intervals and for the 
moment disregarded IMU errors, there would be no inherent loss of 
information. However, as argued in  Section 2, estimating the trajectory 
only at a lower frequency means disregarding motion present at higher 
frequencies (i.e., vibrations). In the context of LiDAR georeferencing, 
the resulting errors in the trajectory propagate to the LiDAR point 
cloud. Because the LiDAR measurements are made at a rate far higher 
than the IMU sampling rate, it is in any case necessary to interpolate 
the trajectory for georeferencing. The argument regarding frequency 
cut-off can also be seen from the viewpoint of interpolation, as the 
interpolation error grows with the distance between the data points. 
Here, we address this issue by recovering the high-frequency trajec-
tory components from a low-frequency trajectory using the original 
high-frequency IMU measurements. This may be interpreted as an inter-
polation method which is aided by the IMU measurements themselves 
in order to improve accuracy within the larger sample intervals.

Assuming that the trajectory estimation (Section 3.1) was performed 
with downsampled IMU measurements, estimates of position and ori-
entation at each low-frequency sample time 𝑡𝑑𝐾 = 𝑡𝐾

𝒙𝑑𝐾 , 𝑹𝑑𝐾 , 𝐾 = 1,… , 𝑁, (3.17)

are available in addition to the original IMU measurements at the 
high-frequency sample times
𝛥𝜽𝑘, 𝛥𝒗𝑘, 𝑘 = 1,… , 𝑛. (3.18)

The aim is to recover the high-frequency position and orientation 
for each sample time 𝑡𝑘
𝒙 , 𝑹 , 𝑘 = 1,… , 𝑛. (3.19)
𝑘 𝑘
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To simplify notation, the coordinate systems are not explicitly specified, 
but both position and orientation refer to the body coordinate system 
(𝑏-system) with respect to the earth-fixed coordinate system (𝑒-system).

For the low-frequency sample times 𝑡𝑑𝐾 , 𝐾 = 1,… , 𝑁 , the position 
and orientation are already known. For these sample times, we define 
the following auxiliary variables 
𝒙+𝑑𝐾 ∶= 𝒙−𝑑𝐾 ∶= 𝒙𝑑𝐾 ,

𝑹+
𝑑𝐾 ∶= 𝑹−

𝑑𝐾 ∶= 𝑹𝑑𝐾 ,
(3.20)

which will allow defining recursive equations for the forward- and 
backward-integrated position and orientation values within each
[𝑡𝑑(𝐾−1), 𝑡𝑑𝐾 ] interval. For every 𝐾 = 1,… , 𝑁 −1 and 𝑗 = 1,… , 𝑑 −1 the 
corresponding high-frequency index is 𝑘 = 𝑑𝐾 + 𝑗. The high-frequency 
trajectory for each 𝑘 is reconstructed from a convex combination of 
the forward-integrated and the backward-integrated high-frequency 
inertial measurements.

For the orientation, this leads to 
𝑹+

𝑘 ∶= exp(−𝛥𝜽𝑘)𝑹+
𝑘−1 exp (𝛥𝑡𝑘 𝝎

𝑒
𝑖𝑒)

𝑹−
𝑘 ∶= exp(𝛥𝜽𝑘+1)𝑹−

𝑘+1 exp (−𝛥𝑡𝑘+1 𝝎
𝑒
𝑖𝑒)

(3.21)

𝑹𝑘 ∶= 𝑹+
𝑘 exp

(

𝑗
𝑑
log

(

(𝑹+
𝑘 )

𝑇𝑹−
𝑘
)

)

, (3.22)

where 𝑘 = 𝑑𝐾 + 𝑗, 1 ≤ 𝐾 < 𝑁 and 0 < 𝑗 < 𝑑.

Note that this fills the gaps between each 𝑡𝑑𝐾 and 𝑡𝑑(𝐾+1), but does not 
change the orientation at the [𝑡𝑑𝐾 , 𝑡𝑑𝐾+1

] interval endpoints.
For the position, the procedure is similar but involves integrating 

twice to obtain first the velocity and then the position, forwards and 
backwards. The rotation computed previously is used to reference each 
measurement to the correct time. This yields 
𝒂+𝑘 ∶= 𝜸𝑘−1 −

[

𝝎𝑒
𝑖𝑒
]2
∧ 𝒙

+
𝑘−1 − 2

[

𝝎𝑒
𝑖𝑒
]

∧ 𝒗
+
𝑘−1,

𝒗+𝑘 ∶= 𝒗+𝑘−1 +𝑹𝑇
𝑘−1𝛥𝒗𝑘 + 𝛥𝑡𝑘𝒂+𝑘 ,

𝒙+𝑘 ∶= 𝒙+𝑘−1 +
𝛥𝑡𝑘
2

(

𝒗+𝑘 + 𝒗+𝑘−1
)

,

(3.23)

for the forward pass and 
𝒂−𝑘 ∶= 𝜸𝑘+1 −

[

𝝎𝑒
𝑖𝑒
]2
∧ 𝒙

−
𝑘+1 − 2

[

𝝎𝑒
𝑖𝑒
]

∧ 𝒗
−
𝑘+1,

𝒗−𝑘 ∶= 𝒗−𝑘+1 −𝑹𝑇
𝑘 𝛥𝒗𝑘+1 − 𝛥𝑡𝑘+1𝒂−𝑘 ,

𝒙−𝑘 ∶= 𝒙−𝑘+1 −
𝛥𝑡𝑘+1
2

(

𝒗−𝑘 + 𝒗−𝑘+1
)

,

(3.24)

for the backwards pass, where 𝜸𝑘 = 𝜸𝑒𝑖𝑏(𝑡𝑘). Finally, the high-frequency 
positions are again determined by convex combination of the forward 
and backward integrals

𝒙𝑘 ∶= 𝒙+𝑘 +
𝑗
𝑑
(𝒙−𝑘 − 𝒙+𝑘 ), (3.25)

where 𝑘 = 𝑑𝐾 + 𝑗, 1 ≤ 𝐾 < 𝑁 and 0 < 𝑗 < 𝑑.

3.5. Implicit modeling of the high-frequency trajectory

The above procedure allows to perform trajectory estimation with 
downsampled IMU measurements, yet recover the high-frequency tra-
jectory for the purpose of georeferencing. For the NLS trajectory es-
timation, the GNSS and LiDAR measurements must be referenced to 
the high-frequency trajectory. To achieve this without introducing 
additional parameters into the NLS adjustment, we split the trajectory 
into a low-frequency and a high-frequency part (see also Fig.  6) 
𝑹(𝑡) ∶= 𝑹LF(𝑡) ⋅𝑹HF(𝑡),

𝒙(𝑡) ∶= 𝒙LF(𝑡) + 𝒙HF(𝑡),
(3.26)

where ∀𝐾 = 1…𝑁,

𝑹(𝑡𝑑𝐾 ) = 𝑹LF(𝑡𝑑𝐾 ), (3.27)

𝒙(𝑡𝑑𝐾 ) = 𝒙LF(𝑡𝑑𝐾 ),
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Fig. 6. Illustration of the decomposition into low-frequency and high-frequency parts. 
Note that the high-frequency part is zero at all low-frequency sample times 𝑡𝐾 , 𝐾 =
1,… , 𝑁 .

and only estimate the former within the adjustment.
Splines are used to represent the continuous-time position and 

orientation. Specifically, we use cubic quaternion Hermite splines (Kim 
et al., 1995) for orientation and quintic Euclidean Hermite splines 
for position, which are once and twice continuously differentiable, 
respectively. The splines are defined by their nodal values
𝑹LF(𝑡𝑑𝐾 ) = 𝑹𝑑𝐾 ,
𝒙LF(𝑡𝑑𝐾 ) = 𝒙𝑑𝐾 ,  and

(3.28)

𝑹HF(𝑡𝑘) = 𝑹𝑇
LF(𝑡𝑘)𝑹𝑘,

𝒙HF(𝑡𝑘) = 𝒙𝑘 − 𝒙LF(𝑡𝑘).
(3.29)

Each spline’s nodes are placed at the respective sample times 𝑡𝑘 and 𝑡𝑑𝐾 . 
Hermite splines are used because their spline coefficients are simply 
their nodal values, whereas recovering a quadratic or cubic B-spline’s 
coefficients from nodal values requires solving large equation systems 
with at least 𝑛 parameters, which is exactly what we aim to avoid in 
the first place.

Within the NLS adjustment, only the 𝑁 sets of coefficients of the 
low-frequency splines 𝒙LF and 𝑹LF are optimized. Note that regardless 
of the downsampling factor 𝑑, both parameters and observations are 
reduced accordingly and the redundancy of the adjustment remains the 
same.

3.6. Iterative estimation of IMU errors

In the previous sections, no attention was paid to errors in the IMU 
measurements. The IMU error model (Pöppl et al., 2024) is standard: 
the measured values 𝛥𝒗̃, 𝛥𝜽̃ are tainted by additive white noise 𝝐⋆, 
biases 𝒃⋆ and scale factors 𝑺⋆ = diag(𝑠𝑥⋆, 𝑠𝑦⋆, 𝑠𝑧⋆). The measurement 
model for the velocity and orientation increments for an interval of 
length 𝛥𝑡 is 
𝛥𝒗 1

𝛥𝑡

𝛥𝜽 1
𝛥𝑡

=

=

(𝑰 + 𝑺𝑣)𝛥𝒗
1
𝛥𝑡 + 𝒃𝑣(𝑡)

(𝑰 + 𝑺𝜃)𝛥𝜽
1
𝛥𝑡 + 𝒃𝜃(𝑡)

+
+

𝝐𝑣
𝝐𝜃

. (3.30)

When aggregating the IMU measurements according to Eqs.  (3.11) 
and (3.14), the presence of bias, scale factor and random errors will 
cause errors in the aggregated measurements and in the upsampled 
trajectory. Such errors cannot be precisely modeled in the same way 
after aggregation due to the non-linearities involved. One option to 
mitigate this problem would be to move the computation of the aggre-
gated measurements into the adjustment, but that is computationally 
expensive. Often, the contribution of the biases is considered in the ad-
justment through linearization (Forster et al., 2015; Cucci and Skaloud, 
2019). Both approaches require modifying the observation equations. 
We take a different approach, and re-compute both the upsampled 
trajectory and the downsampled measurements iteratively. This process 
is easily parallelizable and in the context of batch NLS adjustment, 
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where all parameters are estimated simultaneously, the computational 
effort required to solve the linear equation system is much larger. The 
stochastic model for the IMU noise 𝝐⋆ remains unchanged (see Pöppl 
et al. (2024)); the error variance is simply derived from the a-priori 
determined noise densities (Farrell et al., 2022), i.e., scaled to account 
for the length of the time interval 𝛥𝑡.

The NLS adjustment problem is inherently iterative, and is per-
formed until convergence or for a total number of 𝑀 iterations. How-
ever, every 

√

𝑀 iterations or earlier in case of convergence, it is 
stopped. At this point, an estimate of the IMU biases and scale factors 
is available. This is used to correct the high-frequency IMU measure-
ments and then both the downsampled low-frequency measurements 
and the upsampled high-frequency trajectory are re-generated from the 
corrected measurements. Note that the IMU bias and scale factors need 
to be re-applied on top of the new downsampled measurements, as 
otherwise the stochastic model for these errors would be invalid. The 
NLS iterations are then restarted again. This process can be seen as 
a sort of fixed point iteration which, ideally, converges to the actual 
bias and scale factor values. Practically, the iteration is stopped at the 
maximum of 𝑀 total NLS iterations or if the change in the re-generated 
downsampled IMU measurements is below a certain threshold.

The full estimation procedure is thus made up of two nested it-
erations: The outer iteration, termed D/U iteration, re-generates the
downsampled IMU measurements and the upsampled trajectory. The 
inner iterations are standard NLS iterations, performed within each 
D/U iteration in order to obtain the NLS estimate Eq. (3.2) given the 
currently available downsampled IMU measurements and upsampled 
trajectory. The individual steps are:

. Starting from an initial trajectory estimate, compute the correspond-
ing high-frequency trajectory using the original IMU measurements 
𝛥𝜽𝑘, 𝛥𝒗𝑘 and compute the downsampled measurements 𝛥𝜽

𝐾
, 𝛥𝒗

𝐾
.

. Run the NLS optimization with downsampled IMU observations, 
GNSS position observations and (optionally) LiDAR plane observa-
tions to obtain error estimates 𝒃⋆, 𝒔⋆ for the downsampled IMU 
measurements, i.e., 
𝛥𝜽

𝐾 1
𝛥𝑡

= diag(𝟏 + 𝒔𝜃)𝛥𝜽𝐾
1
𝛥𝑡

+ 𝒃𝜃 + 𝝐𝜃 ,

𝛥𝒗
𝐾 1
𝛥𝑡

= diag(𝟏 + 𝒔𝑣)𝛥𝒗𝐾
1
𝛥𝑡

+ 𝒃𝑣 + 𝝐𝑣.
(3.31)

The NLS iterations are stopped after ⌊
√

𝑀⌋ iterations or in case of 
convergence, where convergence is assumed if the RMS change of 
optimized trajectory between iterations is below a given threshold.

. Correct the original high-frequency IMU measurements with the 
error estimates 
𝛥𝜽𝑘 ← diag(𝟏 + 𝒔𝜃)−1(𝛥𝜽𝑘 − 𝒃𝜃),

𝛥𝒗𝑘 ← diag(𝟏 + 𝒔𝑣)−1(𝛥𝒗𝑘 − 𝒃𝑣).
(3.32)

. Using the corrected high-frequency IMU measurements,
re-compute the upsampled trajectory and the downsampled IMU 
measurements 𝛥𝜽𝐾 , 𝛥𝒗𝐾 and re-apply the estimated errors to the 
downsampled measurements 
𝛥𝜽

𝐾
← diag(𝟏 + 𝒔𝜃)𝛥𝜽

𝐾
+ 𝒃𝜃 ,

𝛥𝒗
𝐾
← diag(𝟏 + 𝒔𝑣)𝛥𝒗

𝐾
+ 𝒃𝑣.

(3.33)

. Run the NLS optimization with downsampled IMU observations, 
GNSS position observations and (optionally) LiDAR plane observa-
tions.

In the D/U iterations, steps 2–4 are repeated until the maximum 
absolute change in the re-generated downsampled measurements is 
below the given tolerance or the maximum number of NLS iterations 𝑀
is reached. Practically, 𝑀 = 16 is used in which case both termination 
conditions are reached before the maximum number of iterations. As 
at least one U/D-iteration is always performed, this scheme generally 
increases the required number of NLS iterations and thus incurs a small 
runtime overhead (see  Section 4.1.4).
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Fig. 7. DJI M350 with a RIEGL miniVUX-3UAV laser scanner and integrated RiLOC-E 
navigation system.

4. Results

Remote sensing payloads are usually mounted with mechanical 
dampening components in order to reduce the impact of vibrations 
on the measurements, whether caused by the carrier platform or the 
scanning system itself. However, it is not physically possible to fully 
dampen all vibrations, especially for smaller UAV platforms where 
payload weight and size is limited. In airborne laser scanning with 
crewed aircraft, the laser scanning system is often mounted in a gyro 
stabilization mount which ensures consistent orientation and low dy-
namics of the payload. Such mounting is not always feasible, depending 
on the payload and aircraft used.

We analyze inertial data from two representative airborne plat-
forms: a small quadcopter UAV with a maximum payload of 2.7 kg, 
and a crewed fixed-wing survey aircraft with the payload mounted in 
a pod affixed to the aircraft wing strut. All data processing is carried 
out on a Linux workstation with an AMD Ryzen 7 2700X CPU, 64GiB 
RAM and an NVMe drive. The non-linear least-squares adjustment is 
implemented using the CERES solver (Agarwal et al., 2022).

4.1. Case study: UAV LiDAR

The first dataset is acquired with a quadcopter UAV (DJI Matrice 
M350) featuring as payload a RIEGL miniVUX-3UAV laser scanner 
integrated with a RIEGL RiLOC-E navigation system (Fig.  7). The latter 
comprises a low-SWaP4 consumer-grade MEMS IMU, in this case config-
ured with an output rate of 850Hz, and a dual-frequency GNSS receiver 
with an output rate of 7Hz. Traditional high-performance GNSS/IMU 
solutions used for UAV-based surveying provide orientation with an 
expected accuracy of approximately 30mdeg. In comparison, the IMU 
used here is an entry-level option meant for tight-coupling with the 
laser data (Pöppl et al., 2023, 2024), and the expected accuracy of 
purely GNSS/IMU-derived orientation is up to an order of magnitude 
less accurate. However, evaluation of absolute georeferencing accuracy 
is not the goal of this work; rather, the aim is to investigate the 
impact of unresolved vibrations on the trajectory itself as well as the 
achieved precision (single-strip and multi-strip) of the georeferenced 
point cloud when using downsampled IMU measurements as described 
in  Section 3.3.

The test dataset (Fig.  8) is an intentionally small data acquisition 
consisting of only six flight strips, flown in pairs with 100% overlap, 
at a flying height of 50m above ground level (AGL) and with flight 
speed of 6 m

s . The data acquisition is kept short (approx. 10min) to 
keep computational effort and storage needs reasonable for evaluation 
with a large number of different processing runs and therefore point 

4 Size, weight and power (SWaP).
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Fig. 8. ULS point cloud colored by reflectance (dark/bright = low/high reflectance, 
hillshade) and flight trajectory, superimposed onto map (© OpenStreetMap contrib-
utors). The X/Y-axes are those of a local east/north/up (ENU) Cartesian coordinate 
system. The point clouds from the two flight strips in the dashed white rectangle are 
later evaluated in detail.

clouds. The study area contains an industrial complex, which is chosen 
specifically as it comprises extensive flat surfaces (asphalted ground 
and buildings with mostly flat roofs, as well as cuboid shipping pallets).

4.1.1. Analysis of in-flight inertial measurements
To get an a-priori estimate of the errors which might be incurred 

by aliasing or cut-off effects when downsampling, a spectral analysis of 
the 850Hz inertial sensor data is performed. Fig.  9 shows the spectrum 
for the full flight period.

Apart from the actual platform motion, there are further peaks 
due to vibration at around 45Hz, 90Hz and 110–120Hz. Because this 
is aggregated for the whole flight, there will be periods with peak 
vibrations exceeding the magnitudes shown here, as well as periods 
with less vibrations. Generally, vibrations increase during maneuvers 
(e.g., turns) and are slightly lower within the flight lines where a 
consistent speed and heading is maintained. The exact source of the 
vibrations is not known, but possibly related to either the scan mecha-
nism or UAV rotor rotation. Recovering the 120Hz signal would require 
a sampling rate of at least 240Hz. A computable heuristic for the 
error caused by insufficient sampling rate is provided by Eq. (2.9), 
and shown in Fig.  10 for the orientation. The position is less relevant 
here, for two reasons: The high-frequency position error is relatively 
small (less than 0.15mm, see also Fig.  11), and it results directly in a 
translation error in the point cloud of similar magnitude. On the other 
hand, an orientation error of 18mdeg (corresponds approximately to 
the roll error for a downsampling factor of 4), would cause a point 
displacement of 3.1 cm at 100m range5. It can also be seen that the 
sequential increases in predicted error occur at downsampling factors 
corresponding to the peaks in the signal spectrum. The increases at 
𝑑 = 4 and 𝑑 = 8 correspond to sampling rates of 212.5Hz and 
106.25Hz. Note that 200Hz, slightly below 𝑑 = 4, is a sampling 
frequency often used by inertial navigation systems for surveying ap-
plications. Thus, for this specific carrier platform and payload, the
standard choice of sampling rate already leads to appreciable signal 

5 100m is the distance from scanner to the left or right strip boundary at 
50m AGL.
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Fig. 9. Spectrum of inertial measurements from the DJI M350 quadcopter UAV with 
the RIEGL miniVUX-3UAV as payload. The graph’s x-axis shows the frequency in Hz, 
and the 𝑦-axis the corresponding accelerometer or gyroscope signal amplitude.

Fig. 10. Predicted root mean square error (RMSE) in orientation when decimating the 
IMU measurements with a given factor. IMU data is used for the full flight of the DJI
Matrice M350 and RIEGL miniVUX-3UAV.

cut-off. The (predicted) orientation errors increase markedly as higher 
downsampling factors are used - which would be desirable in order to 
reduce runtime and memory usage of optimization-based GNSS/IMU-
integration algorithms. To investigate the actual impact of these errors 
on point cloud precision, the processed trajectory and georeferenced 
point clouds are now analyzed.

4.1.2. Differences in the estimated trajectories
In order to quantify the effects of downsampling on the estimated 

trajectory, we analyze the differences between the baseline trajectory 
(standard processing, i.e., with IMU observations at the full output rate) 
and trajectories processed with downsampled IMU measurements. We 
do this for standard downsampling as well as for the suggested down-
/upsampling strategy, and compare both the trajectories themselves 
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Fig. 11. Difference between baseline GNSS/IMU trajectory and trajectory processed with downsampled IMU measurements without reconstruction of high-frequency components 
(V1), for the full flight period.
as well as the point cloud georeferenced with these trajectories. This 
analysis is carried out once for GNSS/IMU integration and once for 
GNSS/IMU/LiDAR-integration.

The trajectory estimation based on GNSS/IMU integration is per-
formed as described in  Section 3. For the LiDAR-specific measurement 
equations and feature matching/extraction method see Pöppl et al. 
(2024). The processing is done once for 𝑑 = 1, i.e., standard processing 
with no downsampling, and as two distinct variants for 𝑑 > 1:

• V1: Anti-aliasing via low-pass filter followed by downsampling (see 
Section 3.3). This variant is meant to mimic the output of an IMU set 
to a lower output rate, which performs the anti-aliasing and down-
sampling in real-time and outputs the corresponding lower-frequency 
integrated 𝛥𝒗 and 𝛥𝜽 values.

• V2: Downsampling as above, but without anti-aliasing and with 
reconstruction of the higher frequency trajectory components (see 
Section 3.4) and implicit modeling of the higher-frequency com-
ponents in the adjustment (see Section 3.5). The downsampling of 
the IMU measurements, upsampling of the high-frequency trajectory 
and the NLS optimization are iterated until the RMS change in the 
downsampled IMU measurements (due to convergence of the IMU 
error estimates) is below 0.01 m

s2  and 0.025
mdeg
s  (see  Section 3.6).

Note that in both cases, the number of estimated parameters and 
measurements in the adjustment are the same, additional effort lies 
only in the repeated downsampling of the IMU measurements and in 
possibly increased number of NLS iterations.

This processing is performed once at full IMU frequency (𝑑 = 1) to 
obtain a baseline trajectory. This will be the reference for evaluating 
the impact of the downsampling on the trajectory. Then for each 𝑑 ∈
{2,… , 50}, two separate trajectories are processed as described above. 
The overall difference between the respective 𝑑 > 1 trajectory and the 
baseline trajectory is split into two parts, a high-frequency (𝜈 > 10 Hz) 
part and a low-frequency (𝜈 ≤ 10 Hz) part. This is done to highlight 
the effects of downsampling, which manifest in two ways: oscillating 
errors caused by unresolved high-frequency trajectory dynamics and 
low-frequency errors caused by inconsistent IMU error estimates (cf. 
Section 3.6).
353 
Fig.  11 shows the differences in position and orientation between 
baseline trajectory (𝑑 = 1) and 𝑑 > 1 trajectories derived from 
𝑑-times downsampled (V1) IMU measurements. These emulate trajec-
tories obtained from IMUs with 𝑑-times reduced sampling rate where 
measurements are appropriately aggregated internally but only output 
at lower rate. As expected, the downsampling has relatively little effect 
on the position, which exhibits a maximum RMS difference (w.r.t. 
the baseline position) below 1mm in the low-frequency [0–10] Hz 
band, and below 0.15mm in the high-frequency [>10] Hz band. The 
orientation error is more significant: in the low-frequency band, the 
downsampling indirectly causes errors up to 30mdeg due to differ-
ing IMU bias and scale factor estimates. In the high-frequency band, 
the anti-aliasing and downsampling cuts off the respective frequency 
components above the reduced Nyquist rate causing an RMS difference 
of up to 16mdeg. The errors after trajectory estimation, i.e., after 
integration with GNSS, generally agree with the heuristics derived from 
the frequency spectrum (Fig.  10) but are slightly lower. The increase is 
not linear but increases sharply at 𝑑 = 4 (corresponding to a Nyquist 
frequency of 106.25Hz, cf. Fig.  9). When downsampling at exactly the 
frequency of strong vibration, some residual aliasing occurs. In the con-
text of trajectory estimation, this causes an additional problem: a signal 
which oscillates with possible high amplitude now looks constant, and 
IMU bias and scale factor can no longer be distinguished. This makes it 
even more difficult to estimate IMU biases for the downsampled IMU 
measurements, especially at these frequencies. This is true both for 
position (respectively, the accelerometer) and orientation (respectively, 
the gyroscope). However, low-frequency errors can be compensated in 
a strip adjustment or LiDAR-integrated trajectory estimation, while the 
high-frequency errors generally cannot.

The techniques introduced in Sections 3.4–3.6 aim to mitigate 
both the low-frequency errors (due to inconsistent IMU error estimates) 
and the high-frequency errors (due to unresolved vibrations). Fig. 
12 shows that for the GNSS/IMU adjustment, now performed with 
trajectory upsampling and IMU error iteration (V2), the previously seen 
discrepancies between baseline trajectory and 𝑑 > 1 trajectories reduce 
drastically. There are residual low-frequency errors at the downsam-
pling factors corresponding to frequencies with strong vibrations and 



F. Pöppl et al. ISPRS Journal of Photogrammetry and Remote Sensing 223 (2025) 344–361 
Fig. 12. Difference between baseline GNSS/IMU trajectory and trajectory processed with GNSS and downsampled IMU measurements with reconstruction of high-frequency 
components (V2), for the full flight period.
Fig. 13. Difference between baseline GNSS/IMU/LiDAR trajectory and trajectory processed with GNSS, LiDAR and downsampled IMU measurements with reconstruction of 
high-frequency components (V2), for the full flight period.
multiples thereof, both for position and orientation. However, these 
are at most 0.5mm and 10mdeg respectively, and therefore well below 
both the errors in Fig.  11 and the expected accuracy of the GNSS/IMU 
solution.

The remaining low-frequency differences, occurring due to dif-
ficulties in estimating IMU errors when using highly downsampled 
measurements in the presence of vibrations at the downsampling rate, 
are then further reduced when integrating LiDAR-derived plane ob-
servations in the adjustment (Fig.  13). As the aim is specifically to 
investigate the effects of downsampling itself, the matching/subsam-
pling (Pöppl et al., 2024) of the LiDAR plane features is done only 
once for 𝑑 = 1 and then re-used for the other processing runs in order 
to eliminate any differences due to the feature matching process. The 
suggested strategy of repeated downsampling and IMU error iteration 
(Section 3.6) successfully mitigates low-frequency trajectory errors and 
completely eliminates high-frequency trajectory errors. The RMS dif-
ference in the estimated trajectory (w.r.t. 𝑑 = 1) is below 0.5mm in 
position and 5mdeg in orientation, even for downsampling factors of 
up to 𝑑 = 50 (corresponding to an IMU sampling rate of 17Hz).

4.1.3. Precision of the georeferenced point cloud
To evaluate the single-strip point cloud precision for the GNSS/IMU-

derived point cloud, a single flight strip is analyzed and the single-strip 
precision of each 𝑑 > 1 point cloud compared to that of the 𝑑 = 1
baseline point cloud. For each point cloud, a precision grid is derived 
by computing a PCA within each grid cell. Then, for each grid cell, the 
precision 𝜎1 of the baseline 𝑑 = 1 point cloud is subtracted from the 
downsampling-derived 𝑑 > 1 point cloud’s precision 𝜎𝑑 to obtain the 
relative precision change 𝛥𝜎𝑑 ∶= 𝜎𝑑 − 𝜎1.

This analysis of precision (i.e., point spread) on planar surfaces as-
sumes that these surfaces are sufficiently planar, implying that most of 
the point spread is due to measurement errors. To ensure this is the case 
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in the study area, a reference point cloud (Fig.  14(a)) of the core area 
of interest was acquired via terrestrial laser scanning. Fig.  14(b) shows 
the corresponding precision grid derived from the TLS point cloud, with 
standard deviations consistently below 3mm. In comparison, the ULS 
precision grid (for the baseline 𝑑 = 1 point cloud, Fig.  15(a)) shows 
standard deviations of approximately 1 cm on planar surfaces (ground, 
roofs) with slightly higher point spread at the strip edges in some areas. 
It can therefore be assumed that the major part of the [≈1] cm standard 
deviation is not due to model errors (i.e. non-planar geometry), but 
due to measurement errors. These measurement errors may be ranging 
errors, scanning errors or trajectory errors, or errors due to high angle 
of incidence and consequently elongated laser footprint causing view-
dependent discrepancies on non-smooth surfaces. While these cannot 
be distinguished for the baseline 𝑑 = 1 solution, the additional point 
spread incurred from downsampling can be quantified through the rel-
ative precision 𝛥𝜎𝑑 , obtained by subtracting the baseline precision grid 
from the corresponding 𝑑 > 1 precision grid. Since we are interested 
only in sufficiently planar surfaces, grid cells with a standard deviation 
above 10 cm are masked.

The relative precision grids for downsampling (V1) with 𝑑 = 4
and 𝑑 = 8 are shown in Figs.  16(a) and 16(b). At 𝑑 = 4, a small 
increase in point spread is visible, predominantly at the strip edges due 
to high-frequency roll errors. This corresponds to a sampling frequency 
of 212.5Hz, which is already insufficient to properly resolve the vibra-
tions present, especially in the forward-axis corresponding to the UAV 
roll angle (cf. Fig.  9). In this case, the standard deviation at the strip 
edges increases by up to 0.5 cm compared to the baseline point cloud. 
The magnitude of this effect increases with the downsampling factor 
𝑑. Fig.  18(a) shows the aggregated (RMS and 99-th percentile) relative 
standard deviation for all 𝑑 ∈ {2,…50}. Note that the relative standard 
deviation increases sharply up to 𝑑 = 8 (106.25Hz), and only slowly af-
terwards. At this frequency, most of the vibrations are no longer present 
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Fig. 14. Terrestrial laser scanning (TLS) data acquisition consisting of a total of 62 
scan positions, performed simultaneously with the ULS data acquisition.

in the downsampled signal, and further downsampling incurs mainly 
low-frequency errors which are not visible in the single-strip precision 
at a grid size of 1 × 1m. Figs.  16(c) and 16(d) show the corresponding 
relative precision grids for the down-/upsampling variant (V2) with 
𝑑 = 4 and 𝑑 = 8, which do not exhibit a decrease in precision. In 
this case, the standard deviation increases only for the downsampling 
factors 𝑑 corresponding to the main vibration frequencies, in which 
case the increase is still below 1mm (see Fig.  18(a)).

The multi-strip precision is evaluated in the same way for the 
GNSS/IMU/LiDAR-derived point cloud. Figs.  17(a) and 17(b) now 
show the relative precision grids for downsampling (V1) with 𝑑 = 4
and 𝑑 = 8 of the downsampling-derived point clouds compared to 
the baseline point cloud (Fig.  15(b)). Now, the precision grid includes 
points from both flight strips, thus showing both high-frequency errors 
(increasing point spread within each strip) and low-frequency errors 
(increasing overall point spread). An increased standard deviation by 
[≈1] cm can be seen for 𝑑 = 4, and above 1.5 cm for 𝑑 ≥ 8. The relative 
difference tops out at 𝑑 = 8 (Fig.  18(b)), at which point the high-
frequency errors no longer increase and the low-frequency errors are 
corrected in the LiDAR-integrated adjustment. The up-/downsampling 
variant (V2) does not exhibit notably increased point spread (decreased 
precision) for any 𝑑 (Figs.  17(c), 17(d) and 18(b)). In comparison to the 
GNSS/IMU adjustment, the errors at downsampling factors correspond-
ing to frequencies with significant vibration are now also mitigated. 
Consequently, while point spread is shown to increase with standard 
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Fig. 15. Standard deviation (1𝜎) of ULS flight strip(s) in a 1 × 1m grid. The point 
cloud is georeferenced with the GNSS/IMU and GNSS/IMU/LiDAR 𝑑 = 1 trajectories. 
In each grid cell, a principal component analysis of all points is performed, and the 
grid cell is colored by the resulting standard deviation in normal direction. The lower 
figure shows two flight strips, i.e., the multi-strip standard deviation computed from 
both strips’ points.

downsampling (V1, see  Section 3.3), there is no indication of degra-
dation in point cloud quality when downsampling with the proposed 
strategy (V2, described in Sections 3.3–3.6).

4.1.4. Runtime and memory usage
The key benefit of using downsampled measurements is a significant 

reduction in the number of observations and parameters in the non-
linear optimization. This directly reduces the size of the linear equation 
system which must be solved at each NLS iteration step. Consequently, 
the runtime and memory usage of the adjustment is expected to reduce 
in proportion with downsampling factor 𝑑, down to a lower limit. 
Fig.  19 provides runtime, memory usage and number of iterations 
for all processing runs. For both variants, memory usage for 𝑑 = 1
is approximately 12GiB, and decreases proportionally to 1

𝑑  with a 
lower limit of approximately 1.3  GiB for the GNSS/IMU processing 
and 2.3GiB for the GNSS/IMU/LiDAR processing. Without D/U iter-
ation, the runtime is approximately [( 120𝑑 + 3)] s for the GNSS/IMU 
adjustment and [( 140𝑑 + 6)] s for the GNSS/IMU/LiDAR adjustment. 
With D/U iteration, the factor with which runtime decreases as 𝑑
increases is slightly less than 1

𝑑 , due to the higher total number of 
NLS iterations required. The runtime is also reported as normalized 
with respect to the number of downsampled IMU measurements. This 
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Fig. 16. Single-strip relative precision 𝛥𝜎𝑑 of downsampling-derived 𝑑 > 1 point clouds 
(south-east to north-west, one strip) compared to the baseline 𝑑 = 1 point cloud (Fig. 
15(a)), georeferenced with the GNSS/IMU trajectory.

Fig. 17. Multi-strip relative precision 𝛥𝜎𝑑 of downsampling-derived 𝑑 > 1 point clouds 
(south-east to north-west, two strips, full overlap) compared to the baseline 𝑑 = 1 point 
cloud (Fig.  15(b)), georeferenced with the GNSS/IMU/LiDAR trajectory. This shows 
two flight strips, and thus the multi-strip relative standard deviation computed from 
both strips’ points.
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Fig. 18. Relative precision values for 𝑑 ∈ {2,… , 50}. Given is the 99-th percentile of 
the relative standard deviations 𝑃99(𝛥𝜎𝑑 ), and the root mean square relative standard 
deviation RMS(𝛥𝜎𝑑 ). The red line corresponds to the standard downsampling (V1) and 
the blue line to the suggested down/-upsampling approach (V2).

normalized runtime is almost constant for the GNSS/IMU adjustment 
without downsampling, but increases as 𝑑 increases when LiDAR-
derived observations are included and when performing D/U iterations. 
For the GNSS/IMU/LiDAR adjustment, the lower bound for the runtime 
depends on the number of LiDAR-derived observations and parameters. 
Here, 7000 plane observations (with 3 observation each) corresponding 
to 1700 modeled planes (with 3 parameters each) are used. In this case, 
there is no benefit with respect to runtime for 𝑑 > 16.

In this analysis, runtimes do not include time required for georefer-
encing (performed twice, see Fig.  4) and LiDAR feature extraction & 
matching, as these steps are independent of IMU downsampling. Simi-
larly, the runtime values do not include coarse trajectory initialization, 
required for the NLS optimization. An initial trajectory may be obtained 
with arbitrary downsampling factor, or even completely outside the 
adjustment with e.g., a Kalman filter. Here it is realized with a sliding-
window optimization with matching downsampling factor 𝑑. The total 
runtime for 𝑑 = 1 is 660 s and includes all processing steps: ini-
tialization, GNSS/IMU adjustment, preliminary georeferencing, feature 
extraction and matching, GNSS/IMU/LiDAR adjustment, final georefer-
encing. The two NLS adjustments take up almost half of the runtime. 
The time required for initialization decreases with the downsampling 
factor in the same manner as the NLS runtime (cf. Fig.  19), while 
all other processing steps have the same runtime, independent of 
downsampling factor.

4.2. Case study: Airborne LiDAR

The performance of the proposed methodology applied to airborne 
laser scanning (ALS) with crewed fixed-wing aircraft is assessed using 
an ALS dataset acquired over the town of Horn, Lower Austria. Here, a
RIEGL VQ-580-II laser scanner is used, mounted on a Cessna aircraft 
in a RIEGL VQX-1 wing-pod. The laser scanner is integrated with a 
triple-frequency GNSS receiver/antenna and a navigation-grade IMU. 
This IMU is configured for an output rate of 600Hz, and the GNSS 
receiver output rate is 10Hz. In contrast to the ULS dataset, a high-
grade IMU is used here which comprises pendulous accelerometers and 
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Fig. 19. Runtime (overall, and divided by number of downsampled IMU measure-
ments), memory usage, and iteration counts of the different processing runs.

fiber-optic gyroscopes. This is comparable to survey-grade navigation 
systems used in airborne mapping with an expected orientation accu-
racy of 15mdeg. Again, the focus is on the impact on the trajectory 
itself as well as the achieved precision (single-strip and multi-strip) of 
the georeferenced point cloud, specifically when using downsampled 
IMU measurements together with the upsampling and iteration strategy 
described in  Section 3.

The LiDAR data acquisition consists of 9 flight strips, flown at two 
different altitudes (550m and 715m AGL) with a ground velocity of 
50-60 m

s  (Fig.  20). Additionally, GNSS and IMU data is available and 
processed for the full trajectory, which includes approximately 50 km 
round-trip to and from the airfield with a total flight time of 45min. 
The absolute accuracy is evaluated by comparison to 62 independently 
surveyed height check points. The final ALS point cloud is however 
not fully independent, as the z-component of the GNSS lever arm was 
determined from comparison with the ground data; it was not precisely 
measured prior to flight and could not be determined with sufficient 
accuracy from the in-flight data alone.

4.2.1. Analysis of in-flight inertial measurements
The signal spectrum (Fig.  21) shows that the overall level of vi-

brations is an order of magnitude lower than for the ULS dataset 
due to the type of mounting and less stringent restrictions on size 
and weight, which allow for better vibration dampening. Peaks are 
present at frequencies of approximately 110–120Hz, 150–160Hz and 
220–240Hz. The expected high-frequency error caused by anti-aliasing 
and downsampling (effectively cutting-off the respective frequency 
components) can be estimated according to Eq.  (2.9). In contrast to 
the ULS dataset, the errors increase slower at first, but peak at a 
similar level of 30mdeg for high downsampling factors (respectively, 
low sampling rates), as shown in Fig.  22. At 𝑑 = 3 the expected RMSE 
is below 0.5mdeg for roll, pitch and yaw, indicating that in this case, 
a 200Hz sampling rate would be sufficient.
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Fig. 20. ALS point cloud by reflectance (dark/bright = low/high reflectance, hillshade) 
and flight trajectory, superimposed onto map (© OpenStreetMap contributors). The 
X/Y-axes are those of a local east/north/up (ENU) Cartesian coordinate system. The 
62 height check points are marked with blue rectangles.

4.2.2. Differences in the estimated trajectory
The effects of downsampling on the estimated trajectory are again 

evaluated by comparing a baseline trajectory, processed with no down-
sampling (i.e., 𝑑 = 1) to trajectories processed with downsampled IMU 
measurements. The common case of 200Hz (𝑑 = 3) and subsequent 
halving of the output rate (i.e., 𝑑 ∈ {6, 12, 24, 48}) are investigated 
in more detail. For each 𝑑, the adjustment is performed once with 
only downsampling (V1), and once with down/-upsampling and error 
iteration (V2), and respectively with only GNSS/IMU observations and 
again for GNSS/IMU/LiDAR observations.

The RMS differences of the resulting 𝑑 > 1 trajectories to the 
baseline 𝑑 = 1 trajectory are given in Table  1a–1d. The differences 
are in all cases much lower than for the ULS dataset. This is due 
to less vibrations and the higher grade of the IMU, especially lower 
biases, scale factors, and less temporal variation thereof. Specifically, 
there is only about 0.15mm and 0.5mdeg RMS difference between the 
trajectory derived from the full 600Hz inertial measurements and the 
downsampled (V1) 200Hz measurements (Table  1a). This is expected 
when comparing to Fig.  22, which indicates no notable high-frequency 
orientation errors will occur at 𝑑 = 3. For higher downsampling factors, 
the errors do increase again with an RMS orientation difference of over 
20mdeg for 𝑘 = 48.

The difference in orientation between 𝑑 = 1 and 𝑑 > 1 is re-
duced by more than a factor of 10 when using upsampling and er-
ror iteration (V2, Table  1b). For the adjustment including the LiDAR 
planar observations (Table  1c), the RMS orientation differences for 
downsampling-only (V1) processing are on the same level as without 
LiDAR observations. In comparison, these errors are again reduced 
by a factor of at least 10 when performing upsampling and error 
iteration (V2, Table  1d). For this final trajectory, the RMS difference 
between 𝑑 = 1 and 𝑑 ∈ {3, 6, 12} is below 0.1mm and 0.1mdeg, with 
marginally higher position differences for 𝑑 = 24 and 𝑑 = 48.

4.2.3. Precision and accuracy of the georeferenced point cloud
The point cloud precision of the proposed methodology, now ap-

plied to airborne data, is evaluated in the same way as in  Section 4.1. 
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Fig. 21. Spectrum of inertial measurements from a Cessna fixed-wing aircraft with 
the laser scanner mounted inside a wing-pod, for the duration of the LiDAR data 
acquisition.

Fig. 22. Predicted root mean square error (RMSE) in orientation if high-frequency 
measurements are disregarded. Plot shows predicted RMSE when downsampling with 
a given factor, for data from the VQ-580-II mounted on the wing-strut of a Cessna 
aircraft.

In the interest of brevity, we analyze only the final product, i.e., the 
point cloud georeferenced with the trajectory estimated from GNSS, 
IMU, and LiDAR observations. Fig.  23 shows the 1𝜎 precision grid for 
the 𝑑 = 1 point cloud. On relatively flat surfaces (e.g., roads, rooftops), 
a standard deviation of 1 cm is reached. Again, relative precision grids 
are computed by comparison of the 𝑑 > 1 precision grid to the baseline 
(𝑑 = 1). In planar areas (ground, building roofs, etc.), an increase in the 
standard deviation can be attributed to trajectory errors; in vegetated or 
otherwise non-smooth areas, this is not the case and thus grid cells with 
a standard deviation above 10 cm are again masked. The precision grids 
for the downsampling-only (V1) processing runs are shown in Figs. 
24(a)–24(d). As expected from the trajectory analysis (Fig.  22), no 
decrease in precision is discernible for 𝑑 = 3, but standard deviation 
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Table 1
Root mean square (RMS) differences of 𝑑 > 1 trajectories with respect to the baseline 
𝑑 = 1 trajectory.
 (a) Downsampling (V1), GNSS/IMU.
 𝑑 3 6 12 24 48  
 X (mm) 0.05 0.05 0.07 0.18 0.66  
 Y (mm) 0.04 0.05 0.06 0.15 0.56  
 Z (mm) 0.13 0.13 0.14 0.25 0.82  
 Roll (mdeg) 0.25 1.00 2.31 7.16 20.85 
 Pitch (mdeg) 0.32 0.42 1.59 5.34 16.35 
 Yaw (mdeg) 0.40 0.51 1.51 2.94 7.03  
 (b) Down-/upsampling (V2), GNSS/IMU.
 𝑑 3 6 12 24 48  
 X (mm) 0.04 0.06 0.08 0.14 0.20  
 Y (mm) 0.03 0.05 0.06 0.12 0.18  
 Z (mm) 0.03 0.07 0.10 0.34 0.41  
 Roll (mdeg) 0.02 0.02 0.03 0.08 0.12  
 Pitch (mdeg) 0.02 0.03 0.03 0.07 0.11  
 Yaw (mdeg) 0.01 0.03 0.05 0.07 0.14  
 (c) Downsampling (V1), GNSS/IMU/LiDAR.
 𝑑 3 6 12 24 48  
 X (mm) 0.08 0.18 0.64 0.81 3.36  
 Y (mm) 0.10 0.28 0.50 0.73 2.17  
 Z (mm) 0.14 0.17 0.29 0.66 3.19  
 Roll (mdeg) 0.24 1.00 2.31 7.17 20.89 
 Pitch (mdeg) 0.32 0.43 1.59 5.35 16.43 
 Yaw (mdeg) 0.41 0.54 1.53 3.00 7.60  
 (d) Down-/upsampling (V2), GNSS/IMU/LiDAR.
 𝑑 3 6 12 24 48  
 X (mm) 0.02 0.06 0.07 0.15 0.20  
 Y (mm) 0.03 0.05 0.07 0.15 0.19  
 Z (mm) 0.03 0.07 0.09 0.33 0.40  
 Roll (mdeg) 0.01 0.02 0.02 0.04 0.06  
 Pitch (mdeg) 0.01 0.01 0.02 0.04 0.07  
 Yaw (mdeg) 0.01 0.03 0.03 0.06 0.10  

Table 2
Root mean square (RMS) height distance (in cm) of point clouds processed with 
downsampling-only (V1) and down-/upsampling (V2) to the 62 height check points.
 𝑑 1 3 6 12 24 48  
 Downsampling only 2.9 2.9 2.9 2.9 3.7 6.2 
 Down-/upsampling 2.9 2.9 2.9 2.9 2.9 

does increase for 𝑑 ∈ {6, 12, 24, 48}. Aggregated metrics are shown 
in Fig.  25. The RMS and 𝑃99 values of the relative standard deviation 
increase already for 𝑑 = 6 and again for 𝑑 = 12, 𝑑 = 24 and 𝑑 = 48, 
with the RMS standard deviation for 𝑑 = 48 being 3 cm higher than for 
𝑑 = 1. This is mitigated by the proposed upsampling and error iteration 
strategy (V2), which results in equally precise point clouds for all 𝑑.

To ensure there is no negative effect on the georeferencing accuracy, 
Table  2 reports the RMS distances of each point cloud to the height 
check points. By this measure, the proposed down/-upsampling strategy 
(V2) retains the baseline accuracy for all 𝑑. For the downsampling-only 
(V1) point cloud, the RMS with respect to the height check points is at 
a similar level for 𝑑 ∈ {3, 6, 12} but does increase for 𝑑 = 24 and 𝑑 = 48.

4.2.4. Runtime and memory usage
In this case, the total runtime including all processing steps for 𝑑 = 1

is 2300 s (=38.3min) of which 720 s (=12.0min) are spent on initial-
ization (i.e., sliding-window NLS adjustment) and 820 s (=13.6min) 
on the two full NLS adjustments. Even though the IMU sampling rate 
(and therefore the frequency of trajectory parameters) is slightly lower 
than for the ULS dataset, the flight is longer, resulting in an overall 
much larger number of parameters and observations. Consequently, the 
runtime and memory usage is higher (Fig.  26). Runtime and memory 
usage again decrease with the downsampling factor, with a lower limit 
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Fig. 23. Standard deviation (1𝜎) in a 1 × 1m grid. The point cloud is georeferenced 
with the GNSS/IMU/LiDAR 𝑑 = 1 trajectory. In each grid cell, a principal component 
analysis of all points is performed, and the grid cell is colored by the resulting standard 
deviation in normal direction. The standard deviation grid is shown for the full flight 
block (top) and magnified for a smaller area of interest in the center of the block 
(bottom). The latter contains large flat surfaces (building roofs, parking spaces, sport 
courts) with a standard deviation below 1 cm.

of approximately 1.2min and 4.5GiB. The achievable reduction in 
runtime and memory usage is limited by the number of LiDAR-derived 
measurements and the corresponding plane parameters. In this case, 
both runtime and memory usage are reduced up to a factor of 6, with 
no discernible impact on point cloud accuracy and precision.

5. Discussion & conclusion

In this contribution, we have presented methodology for quantify-
ing and mitigating the effects of platform vibration on LiDAR point 
cloud precision in the context of GNSS/IMU/LiDAR-based trajectory 
estimation and georeferencing. Specifically, we propose using down-
sampled IMU measurements together with a simple procedure for 
recovering high-frequency trajectory components from a low-frequency 
trajectory and high-frequency inertial measurements. This procedure 
is applied to adjustment-based GNSS/IMU and GNSS/IMU/LiDAR inte-
gration, where it allows usage of downsampled inertial measurements 
without sacrificing trajectory accuracy, thereby significantly reducing 
computational runtime and memory usage of such methods. Results for 
this approach are presented and evaluated for two airborne data acqui-
sitions with different but typical carrier platforms, a small quadcopter 
UAV and a crewed fixed-wing aircraft.
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Fig. 24. Multi-strip relative precision 𝛥𝜎𝑑 of downsampling-derived 𝑑 > 1 (V1) 
point clouds compared to the baseline 𝑑 = 1 point clouds, georeferenced with the
GNSS/IMU/LiDAR trajectory.

Fig. 25. Relative precision values for 𝑑 ∈ {3, 6, 12, 24, 48}, point cloud georeferenced 
with GNSS/IMU/LiDAR trajectory. Given is the 99-th percentile of the relative standard 
deviations 𝑃99(𝛥𝜎𝑑 ), and the root mean square relative standard deviation RMS(𝛥𝜎𝑑 ). 
The red lines correspond to the standard downsampling (V1) and the blue lines to the 
suggested down/-upsampling approach (V2).

Fig. 26. Runtime (overall, and divided by number of downsampled IMU measurements) 
and memory usage of the different processing runs.
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By analyzing in-flight inertial data as well as the estimated trajec-
tories and the georeferenced point clouds, we demonstrate that for the 
UAV platform, an IMU sampling rate of 200Hz can be a bottleneck for 
the precision of the point cloud. The UAV system used here comprises 
only an entry-level MEMS IMU and features strong vibrations, which is 
not atypical for such platforms. On the other hand, the navigation-grade 
IMU used for the ALS data acquisition exhibits much lower biases, scale 
factor errors and noise; at the same time, less vibrations are present. 
In this case, no reduction in point cloud precision is apparent for the 
200Hz sampling rate, although sampling rates at or below 100Hz do 
lead to degraded point cloud quality.

It is also demonstrated that the proposed methodology reduces the 
frequency and number of IMU measurements and trajectory parameters 
involved in the NLS adjustment, while having negligible impact on the 
estimated trajectory and in consequence no discernible negative impact 
on the precision or accuracy of the final point cloud. Adjustment-
based trajectory estimation methods, where parameters are estimated 
simultaneously, are often limited by runtime and memory usage. For 
both datasets used here, the time spent for NLS adjustment is about half 
of the total runtime, which includes GNSS/IMU adjustment, prelimi-
nary georeferencing, plane extraction and matching, GNSS/IMU/LiDAR 
adjustment and final georeferencing. Memory usage is highest for the 
GNSS/IMU/LiDAR adjustment. With the proposed methodology, run-
time and memory usage are reduced by 85% to approximately 1∕6 of the 
baseline while preserving precision and accuracy of the georeferenced 
point cloud, thus allowing for the processing of larger datasets or higher 
measurement rates. Nevertheless, gains in runtime and memory usage 
of the adjustment-based trajectory estimation are limited by the LiDAR 
observations. Runtime and memory usage of the GNSS/IMU/LiDAR 
adjustment depend on the number of measurements and parameters, 
which is influenced by various factors such as GNSS, IMU, and LiDAR 
sensor measurement rates as well as the number of plane features 
and corresponding objects. The latter depends on point cloud overlap 
between and within strips. Overlaps between different strips, especially 
with large temporal separation, reduce the sparsity of the equation 
system and thereby cause the adjustment’s runtime and memory usage 
to scale superlinearly with the acquisition time. Larger datasets also 
tend to require proportionally more LiDAR correspondences to ensure 
consistency between flight strips. While it is possible to split up large 
datasets into separate tiles and process them individually, this is again 
a multi-step approach where some tiling has to applied first, and 
consistency between tiles must be ensured subsequently. In contrast, 
the holistic and contiguous processing employed here is attractive 
due to increased redundancy in the estimation and the possibility of 
explicitly modeling and exploiting the continuity in trajectory and time-
varying IMU errors. Thus, to allow such adjustment-based trajectory 
estimation methodologies to efficiently process even very large-scale 
data acquisitions (i.e., up to 10hours of flight time) contiguously, 
further work is required in this regard. Processing of large-scale multi-
flight data acquisitions, possibly with multiple different platforms and 
at different times, provides further potential for improving the quality 
of georeferencing. However, efficient processing of such datasets will 
require scalability not only temporally (achieved e.g., by IMU down-
sampling as demonstrated here) but also spatially (possibly through 
domain decomposition, or by aggregating LiDAR measurements).

In summary, joint trajectory and strip adjustment with multiple 
acquisitions, platforms, and sensors is a promising avenue towards 
increased accuracy, precision, and reliability of LiDAR georeferencing 
- if processing can be done efficiently.
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