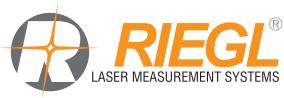
RIEGL-VZ-2000i

- high laser pulse repetition rate of up to 1.2 MHz
- high speed data acquisition with up to 500,000 measurements/sec
- eye safe operation at Laser Class 1
- wide field of view 100°x360°
- range up to 2500 m, accuracy 5 mm
- high accuracy, high precision ranging based on echo digitization, online waveform processing, and multiple-time-around processing
- innovative processing architecture for data acquisition and simultaneous geo-referencing, in real-time
- automatic on-board registration
- simultaneous image and scan data acquisition
- cloud connectivity via Wi-Fi and 3G/4G LTE
- integrated IMU for pose estimation and kinematic data acquistion
- multiple target capability
- optional waveform data output
- remote control
- integrated GNSS receiver

Based on a future-oriented, innovative processing architecture, internet connectivity, and *RIEGL*'s latest waveform processing LiDAR technology, the *RIEGL* VZ-2000i Long Range 3D Laser Scanning System combines proven user friendliness in the field with fast and highly accurate data acquisition.

Its processing architecture enables execution of different background tasks (such as point cloud registration, georeferencing, orientation via integrated Inertial Measurement Unit, etc.) on-board in parallel to the simultaneous acquisition of scan data and image data. A full documentation of the scanner's software components – directly accessible on the *RIEGL* VZ-2000i – provides a sound basis for creation of your own python apps to enhance the scanner functionality. The system provides highest flexibility by supporting numerous peripherals and accessories such as the integrated GNSS unit for high accurate RTK solution, a SIM Card slot for 3G/4G LTE, WLAN, LAN, USB, and different other ports of external units.


RIEGL's unique Waveform-LiDAR technology – based on echo digitization, online waveform processing, and multiple-

time-around processing – is the key to enabling such high speed, long range, high accuracy measurements even in poor visibitlity and demanding multitarget situations caused by dust, haze, rain, vegetation, etc.

Typical applications include

- Topography and Mining
- Natural Hazard Surveying
- Monitoring
- Construction Site Monitoring
- Archeology & Cultural Heritage Documentation
- City Modeling
- Tunnel Surveying
- Civil Engineering
- Research

visit our website
www.riegl.com

VZ®-2000i Optional Equipment and Software

Camera Option

A DSLR camera or the *RIEGL* VZ-i-20M heavy duty camera can be integrated using a high-precision camera mount. Power supply and USB interface are provided via the scanner directly. Acquisition of images simultaneously during scanning reduces the time for handling a scan position drastically.

GNSS Receiver Options

- >> RTK capability by using of:
 - *RIEGL* VZ-i GNSS RTK Receiver, recommended base station via LoRa radio (up to 10 km), network, or NTRIP/TCP
 - GNSS correction service via internet
- >> external GNSS Receiver via data-cable or Bluetooth

recommended base station EMLID REACH RS2

Lightweight Carbon Tripod

RIEGL offers a lightweight carbon tripod to support a quick and smooth workflow for data acquisition.

Power Supply

via Rechargeable Batteries

The *RIEGL* VZ-2000i can be connected to the following optionally available rechargeable batteries:

- >> RIEGL Add-On Rechargeable Li-Ion Battery RBLI 2900 (3 X 99 Wh)
- >> NiMH Battery (235 Wh)

Use of other battery types to be discussed with RIEGL support.

RIEGL Add-On Rechargeable Li-Ion Battery RBLI 2900

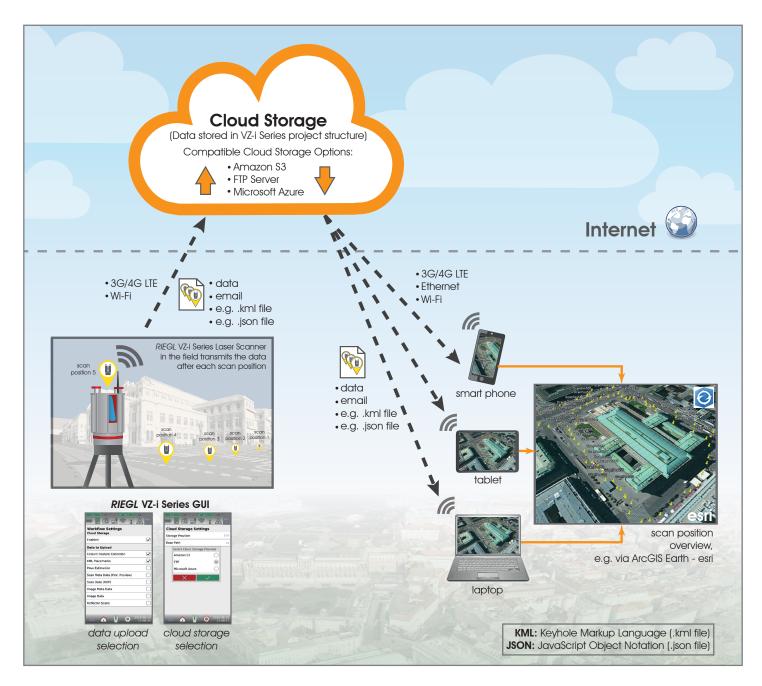
NiMH Battery

Waveform Data Output Option

The digitized echo signals, also known as full waveform data, acquired by the *RIEGL* VZ-2000i are the basis for waveform analysis. This data is provided via the optionally available waveform data output and accessible with the associated *RIEGL* software library RiWAVELib for advanced research and analysis of digital waveform data samples acquired in multiple-target situations.

RIEGL Software Packages

- >> RiSCAN PRO standard processing software for efficient data acquisition and registration in terrestrial laser scanning
- >> RIMINING


optimized workflow for open-pit mining breakline detection and volume calculation fully supported various mining exchange formats for full compatibility with mine planning software Multi Station Adjustment and LIS Geotec Plugin included

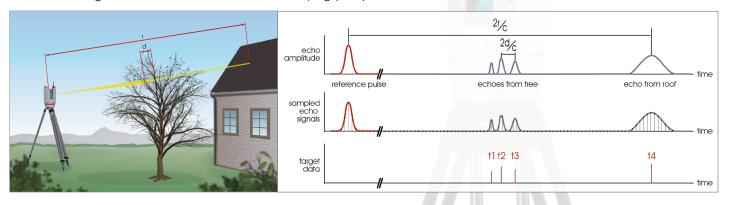
The RIEGL VZ-i Series provides cloud connectivity via either the 3G/4G LTE, Wi-Fi network, or LAN.

The content uploaded to, stored in, and downloaded from the cloud, as well as the appropriate cloud storage provider or FTP server are user definable. The defined data then is transferred to the cloud after finishing each scan.

Supported cloud storage currently includes Amazon S3 and Microsoft Azure.

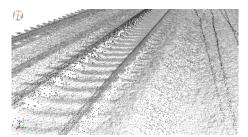
Transferable data includes:

- >> the scanner's position in WGS84 geographic coordinates as *.kml and *.json
- >> scan data preview as *.png image
- >> thumb-nails of the images as *.jpg
- >> scan data as *.rxp
- >> image data as *.jpg
- >> error messages

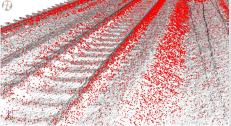

Please note: Adequate data transmission bandwidth is required.

VZ®-i Series Highly Informative Scan Data

RIEGL's sophisticated LiDAR technology is the basis for highly informative scan data. Every laser pulse received provides several attributes in addition to the range measurement information. By using different features and filters provided with the scanner's software, this information can be used to significantly improve the informative content of point clouds.


Multi Target Capability - the Basis for High Penetration Capability

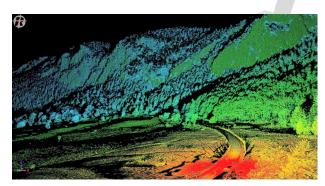
Utilizing the pulsed time-of-flight method for laser range measurements, the VZ-2000i enables determination of the range to all targets a single laser pulse is interacting with. Depending on the measurement program used, the maximum number of targets, which can be detected, is varying (4-15).

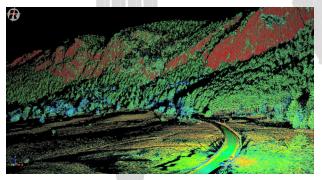


Pulse Shape Deviation Output

Even if the distance between two targets is too short to discriminate between the two echoes, valuable information about the pulse shape of the return pulse is given. That allows it to discriminate whether the return echo originates from a single target or from two nearby targets. A simple thresholding, with respect to the pulse shape information, can remove most of the "invalid" points and keep only the reliable "real" targets.

original scan data range approx. 90 m 15 mdeg angular resolution

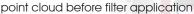

automatic selection of "invalid" points using the pulse shape deviation attribute information


data after elimination of the "invalid" points

Calibrated Reflectance Output

This feature allows the scan data to be displayed and colored by range-independent reflectance of the scanned object for better data classification.

point cloud colored by the range-depending amplitude



point cloud colored by the range-independent reflectance

Rain, Haze, and Dust Penetration

Using deviation and reflectance filters, range measurements caused by rain drops, dust or haze can be identified, selected, and deleted, resulting in a clear and clean point cloud of the relevant scene.

automatically cleaned-up point cloud

A NEW Standard in User-Friendliness

Operation & Remote Control

- >> Easy operation of the RIEGL VZ-2000i with the integrated Graphical User Interface (GUI) via touchscreen.
- >> Remote control via *RIEGL* VZ-i Series App on your device. The GUI of the laser scanner will be displayed on the screen of your smart device.

 Connect locally or from anywhere in the world.

The App is available for iOS (iPhone, iPad, iPad Touch), Android and Windows PC (32 and 64 Bit).

RIEGL VZ-i Series App

Scanner Motion Detection

Several pre-defined data acquisition workflows (e.g. Default, Forensics, OneTouch) are available. These **pre-defined workflows** allow the operation of the scanner by pushing just one icon on the screen per scan position. Once the tripod is re-arranged, a new scan position will automatically be generated. Modifications or creations of individual workflows to meet user specific requirements are also possible.

select the appropriate scanning parameters and start the first scan

move the scanner to the next scan position

Download now!

to start the next scan, just press the START-button

User Applications

User developed applications (written in python software language) for further improvement of processing of surveying missions can be uploaded into the scanner.

RIEGL Kinematic App for Mobile Data Acquisition

The integrated IMU in connection with the *RIEGL* VZ-i GNSS RTK receiver allows the acquisition of kinematic scan data and trajectory data, resulting in a highly accurate 3D point cloud.

RIEGL Monitoring Apps

- configuration of complex monitoring scenarios
- on-board data processing

Data Sheet

visualization of results via web viewer

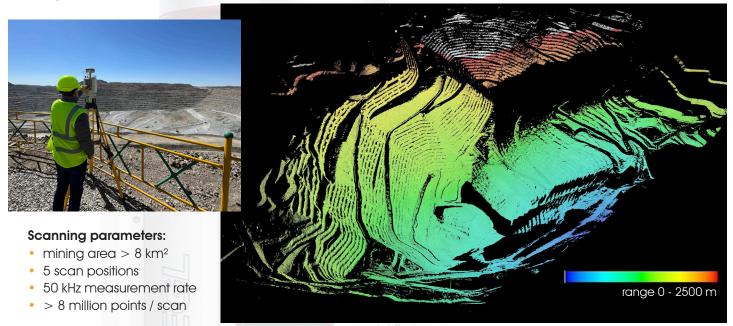
RIEGL Monitoring App Infosheet

Automatic On-board Registration


Matching point clouds of different scan positions (registration) has always been one of the most time-consuming tasks during the post-processing of 3D scanning projects.

With two processors on-board, the *RIEGL* VZ-2000i carries out some post-processing tasks in real-time such as automatic on-board registration in parallel to the scan data acquisition. Find here some examples on how this feature may be utilized to fasten the registration process in open-pit mine surveying.

Merging of Scan Positions


The on-board sensors (GNSS, mems-IMU, compass) deliver a rough orientation of the different scan positions.

The registration task running in the background extracts a voxel representation of the data and it merges automatically the scan positions based on these voxels. Thereafter a fine-alignment is done based on extracted plane-patches from all the scan positions. The resulting common dataset of plane-patches visualized by standard-deviation of these planes indicates the quality of the overall alignment.

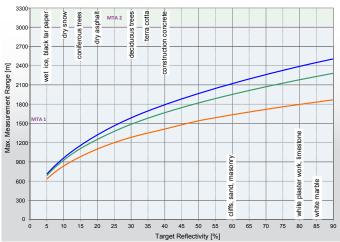
Open-Pit Mining

The real-time on-board registered pointclouds can be directly uploaded to a remote storage and to the cloud for applying further automated analysis steps common in monitoring, autonomous machine control, volume calculations, blast planning, and break line extraction.

scan data of an open-pit mining area, range-colored

Railroad Surveying

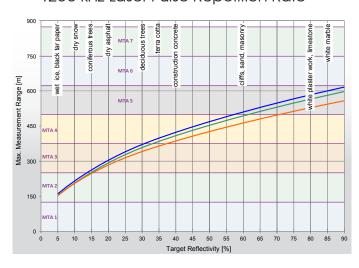
In the example illustrated here, the *RIEGL* VZ-2000i acquired scan data of a railway line. The automatic on-board registration was used to register the scan data of 16 scan positions covering an area of more than 10 km².

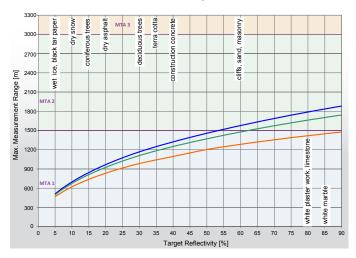


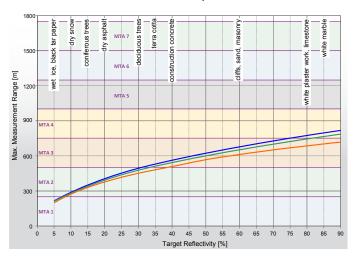
Scanning parameters:


- 300 kHz pulse repetition rate
- more than 1,100 m
- 25 million points / scan
- 15 mdeg resolution

Max. Measurement Range RIEGL VZ®-2000i


50 kHz Laser Pulse Repetition Rate


ranger ivenestivity [/vj


1200 kHz Laser Pulse Repetition Rate

100 kHz Laser Pulse Repetition Rate

600 kHz Laser Pulse Repetition Rate

standard clear atmosphere: visibility 23 km clear atmosphere: visibility 15 km light haze: visibility 8 km

The following conditions are assumed:

- flat target larger than the footprint of the laser beam
- perpendicular angle of incidence
- average brightness
- ambiguity resolved by post processing within RiSCAN PRO

MTA (Multiple Time Around) zones:

MTA 1: no ambiguity / 1 pulse "in the air"

MTA 2: 2 pulses "in the air"

MTA X: X pulses "in the air"

Operating Elements and Connectors RIEGL VZ®-2000i

WLAN antennas (2x, female)

GNSS antenna

3G/4G LTE antennas (2x, male)

carrying handles (2x)

high-resolution (800x480px) 5" color display with touchscreen

All dimensions in mm.

Communication and Interfaces

LAN port 10/100/1000 MBit/sec

• integrated WLAN interface¹⁾ with high-gain MIMO antennas

 integrated multi-mode cellular module available for different regions²⁾ with MIMO 3G/4G LTE antennas

 GigE and USB for connecting an external digital camera

connector for GNSS antenna

• two external power supply ports

 connector for external GNSS receiver and synchronization (1PPS)

• Bluetooth connection to GNSS receiver

1) could be deactivated at the factory due to country-specific regulations 2) available for North America, Europe/APAC, Japan, or South America/APAC

desiccant cartridge

mounting threads inserts (2x)

mounting points (3x) for external digital camera

connector for external GNSS receiver

nitrogen valve

interface for external camera: GigE, USB, power supply, trigger, exposure time

connector for GNSS antenna (internal receiver)

WLAN antennas (2x)

Nano SIM card holder

3G/4G LTE antennas (2x)

Scan Data Storage

• internal 1 TB SSD (Solid State Disc) 900 GB useable

 external storage devices (SDXC cards up to 512 GBytes or USB flash drives)

SDXC card slot for external storage devices

USB connector

connectors for power supply and LAN interface 10/100/1000 MBit/sec, power on/off button

Technical Data RIEGL VZ®-2000i

Laser Product Classification

Range Measurement Performance 1)

Measuring Principle / Mode of Operation

Class 1 Laser Product according to IEC 60825-1:2014

The following clause applies for instruments delivered into the United States: 21 CFR 1040.10 and 1040.11 except for conformance v IEC 60825-1 Ed.3., as described in Laser Notice No. 56, dated May 8, 2019.

time of flight measurement, echo signal digitization, online waveform processing, multiple-time-around processing, full waveform export capability (optional) / single pulse ranging

Laser Pulse Repetition Rate PRR (peak) 2)	50 kHz	100 kHz	300 kHz	600 kHz	1.2 MHz
Effective Measurement Rate (meas./sec) 2)	21,000	42,000	125,000	250,000	500,000
Max. Measurement Range $^{3)}$ natural targets $\rho \geq 90$ % natural targets $\rho \geq 20$ %	2,500 m 1,300 m	1,850 m 950 m	1,100 m 540 m	800 m 380 m	600 m 290 m
Minimum Range	2.0 m	1.5 m	1.5 m	1.0 m ⁴⁾	1.0 m ⁴⁾
Max. Number of Targets per Pulse 5)	15	15	15	8	4

Ranging Accuracy 6) 8) Ranging Precision 7)8) 3D Position Accuracy 9) Laser Wavelength Laser Beam Divergence

With online waveform processing.

Rounded values.

Typical values for average conditions. Maximum range is specified Typical values in diversige containions. Maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and for atmospheric visibility of 23 km. In bright sunlight, the max. range is shorter than under overcast sky.

Minimum range specified for vertical zenith angles from 30 deg to 120 deg, resp. 90° vertical field of view.

5 mm 3 mm

3 mm @ 50 m, 5 mm @ 100 m

near infrared

0.19 mrad @ 1/e 10), 0.27 mrad @ 1/e^{2 11)}

- If more than one target is hit, the total laser transmitter power is split and, accordingly, the achieveable
- range is reduced.

 Accuracy is the degree of conformity of a measured quantity to its actual (true) value.

 Precision, also called reproducibility or repeatability, is the degree to which further measurements show

Scanner Performance

Scan Angle Range Scanning Mechanism Scan Speed

Angular Step Width $^{12)}\Delta \ \vartheta$ (vertical), $\Delta \ \Phi$ (horizontal)

Angular Accuracy 14) Angle Measurement Resolution

Orientation Sensors

GNSS Receiver

Laser Plummet Internal Sync Timer Scan Sync (optional)

Waveform Data Output (optional)

Cloud Storage

Automatic On-board registration

12) Selectable

General Technical Data

Power Supply Input Voltage Power Consumption **External Power Supply**

Main Dimensions / Weight Humidity **Protection Class** Temperature Range Storage

Operation Low Temperature Operation 15) Vertical (Line) Scan

total 100° (+60° / -40°) rotating multi-facet mirror 3 lines/sec to 240 lines/sec $0.0007^{\circ} \leq \Delta \ \vartheta \leq 0.6^{\circ}$ between consecutive laser shots

0.0028° (10 arcsec) better 0.0007° (2.5 arcsec) Horizontal (Frame) Scan

max. 360° rotating head 0° /sec to 150° /sec $^{13)}$ $0.0015^{\circ} \leq \Delta \ \phi \leq 0.62^{\circ}$ between consecutive scan lines 0.0028° (10 arcsec) better 0.0005° (1.8 arcsec)

integrated 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer (compass), barometer integrated L1, concurrent reception of GPS, GLONASS, Beidou

Real Time Kinematics RTK

integrated

integrated, for real-time synchronized time stamping of scan data scanner rotation synchronization for operating several scanners providing digitized echo signal information for specific target echoes Amazon S3, FTP-Server, Microsoft Azure

automatic scan data registration as background process

13) Frame scan can be disabled, providing 2D scanner operation.14) 1-sigma value, based on target modelling, under RIEGL test conditions

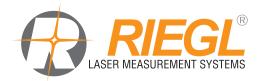
11 - 34 V DC

typ. 70 W (max. 87 W)

up to two independent external power sources can be connected simultaneously for uninterrupted operation, in addition to the RIEGL Add-On Li-Ion battery RBLI 2900

206 mm x 346 mm (width x height) / approx. 9.8 kg (with antennas) max. 80 % non condensing @ +31 °C

IP64, dust-tight and splash-proof


-10 °C up to +50 °C

0 °C up to +40 °C; standard operation

-20 °C: continuous scanning operation if instrument is powered on while internal temperature is at or above 0 °C and still air

-40 °C: scanning operation for about 20 minutes if instrument is powered on while internal temperature is at or above 15 °C and still air

15) Insulating the scanner with appropriate material will enable operation at even lower temperatures.

RIEGL Laser Measurement Systems GmbH. Headquarters RIEGL USA Inc., Headquarters North America

RIEGL Japan Ltd. RIEGL China Ltd. RIFGI Australia Ptv I td RIEGL Canada Inc.

RIEGL Asia Pacific Ltd. RIFGI South America SpA RIEGL Deutschland Vertriebsgesellschaft mbH RIEGL France SAS

