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Abstract

Topo-bathymetric LiDAR has become a standard 3D geodata acquisition technique in geosciences with a wide range of
applications in terrestrial and aquatic landscapes. In particular, the usage of short laser pulses with medium-sized footprints
for bathymetric applications has seen growing attention over the past decade. These LiDAR configurations have shown
higher relative changes in echo pulse width in relation to angle of incidence compared to standard topographic LiDAR
using more collimated near-infrared lasers. Although angle-dependent changes in amplitude have been well documented,
quantification of such a relation for the echo pulse width is still not entirely solved. By focusing on LiDAR with short
and broad pulses, we can therefore use the higher relative changes of such systems together with numerical simulations to
quantify the relationship between the echo pulse width and the angle of incidence. The simulation developed in this study
can be used to estimate neighborhood-independent angles of incidence from the recorded waveform, which enables the
angle of incidence calculation during waveform processing. These waveform-derived angles are comparable to established
methods based on the local point neighborhood, but generally display a higher variance leading to a mean absolute error
of about 10° when compared to neighborhood-based angles of incidence. Using the developed simulation, we also explore
angle-dependent shifts of the peak amplitude linked to potential ranging offsets. There, we were able to show ranging
offsets of up to 12cm for strongly asymmetric laser pulses at angles of 80° and no offsets for symmetric laser pulses,
which provides new insights into the correctness of topo-bathymetric LiDAR systems. In conclusion, we present a detailed
simulation framework which can be used to estimate incidence angles and quantify potential ranging offsets.
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1 Introduction

Light Detection and Ranging (LiDAR) has a long history of
application in different fields of research related to mapping
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of natural habitats and man-made structures (Nelson 2013;
Ullrich et al. 2007; Mandlburger 2020). Both terrestrial and
airborne laser scanning (TLS and ALS) systems have seen
significant improvements in the last decades, reducing costs
and increasing possible applications (Ullrich et al. 2007;
Mandlburger et al. 2023). Advances in signal processing
have improved data quality (Li and Ibanez-Guzman 2020;
Pfennigbauer et al. 2014) and the increasing usage of un-
manned aerial vehicles (UAVs) has made ALS accessible
to a broader audience (Mandlburger et al. 2011; Pfennig-
bauer and Ullrich 2011). Bathymetric LiDAR, suitable for
the penetration of water bodies, almost exclusively uses
a wavelength of 532 nm, while topographic LiDAR usually
uses near-infrared (NIR) lasers (e.g., 1064 nm) (Mallet and
Bretar 2009; Mandlburger 2020; Pfennigbauer and Ullrich
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2011). In addition, there are differences in pulse width and
footprint size depending on the requirements of the survey
or the sensor (Mandlburger et al. 2011, 2023). For bathy-
metric LiDAR, the clear separation of points from the wa-
ter surface and shallow bottom requires (i) short pulses and
(i1) a relatively larger laser footprint (Mandlburger et al.
2011; Williams 2017). The latter is a direct consequence
of general regulations related to eye safety. In contrast, the
typical NIR LiDAR has longer pulses and a smaller foot-
print.

For both systems, the introduction of full-waveform
LiDAR, where the entire temporal history of the reflected
laser pulse is recorded (Li and Ibanez-Guzman 2020; Mallet
and Bretar 2009; Ullrich et al. 2007; Ullrich and Pfennig-
bauer 2011), has enabled additional signal processing that
extends from onboard analysis and opens up the possibility
to analyze the data in more detail in post-processing (Mal-
let and Bretar 2009; Pfennigbauer et al. 2013, 2014). For
topo-bathymetric LiDAR, the processing of full-waveform
data has become a standard tool to improve the detection
of underwater echoes (Schwarz et al. 2019) or, more gen-
erally, to improve the extraction of target positions from
the reflected signal (Allouis et al. 2010; Pfennigbauer et al.
2013, 2014).

To determine the return time of the reflected echo pulse,
several methods exist, including leading-edge detection,
peak detection, center-of-gravity methods, and fitting of
idealized pulse shapes (such as a Gaussian pulse) to the
recorded data (Li et al. 2018; Schwarz et al. 2017; Ull-
rich and Pfennigbauer 2011; Wagner 2010). Focusing on
standard processing, the extraction of the target from the
recorded samples through peak detection or Gaussian fit-
ting has been established for a wide range of applications
(Pfennigbauer et al. 2014; Wagner 2010). As the Gaussian
pulse represents an idealized echo pulse, which is symmet-
rical, additional methods have explored asymmetric pulses
(Chauve et al. 2007; Ji et al. 2022; Rhomberg-Kauert et al.
2024; Wang et al. 2015). The application of these asym-
metric pulses during echo extraction aims to better capture
the differences between the rising and falling edges of
the echo pulse (Ma et al. 2024). There, depending on the
inclination and reflective properties of the target surface,
the asymmetric pulse displays a stronger temporal shift of
the maximum amplitude compared to symmetric functions
(Hu et al. 2022), which in turn can influence the calculation
of range and reflectance.

For full-waveform LiDAR, the relationship between sig-
nal amplitude and echo pulse width has long been estab-
lished, as these parameters are directly related to the re-
flected optical energy (Wagner et al. 2006). There, the rela-
tionship between the angle of incidence and the amplitude
is described through the Lambertian-Cosine law, for ideally
diffuse reflecting targets (Guo et al. 2023). The angle of in-
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cidence is defined as the angle between the direction of the
laser beam and the surface normal direction. Furthermore,
the influence of the angle of incidence on the overall wave-
form has been well researched (Kaasalainen et al. 2011;
Kukko et al. 2008; Li et al. 2018). An increasing angle of
incidence is associated with a decrease in ranging correct-
ness (Kukko et al. 2008). In contrast, for the dependency
of echo pulse width and angle of incidence, a relation was
observed mainly at high angles for simulation based work
(Bolkas 2019; Kukko et al. 2008; Yang et al. 2021). Un-
der real-world conditions, no clear relation was observed
(Pfennigbauer et al. 2013). Thus, current methods for de-
termining the angle of incidence are mainly based on infor-
mation from neighboring 3D points and calculated during
post-processing of LiDAR data (Pfeifer et al. 2014).

Neighborhood information can, for example, be ex-
tracted using the scientific laser scanning software OPALS
(Pfeifer et al. 2014), where normal vectors are calculated
based on planes fitted to neighboring points. Thus, the
angle of incidence is calculated using the normal vector
and the laser beam vector (Pfeifer et al. 2014). The disad-
vantage of such a neighborhood-based method is that the
input parameters often need fine-tuning to achieve optimal
results, which limits automation and requires substantial
time in post-processing of the dataset.

This highlights the challenges in extracting the angles
of incidence and the far-reaching impact they have on the
research based on LiDAR signal processing (Kaasalainen
et al. 2011; Kukko et al. 2008; Pfennigbauer et al. 2013).
Therefore, this study extends existing work through the in-
troduction of a full-waveform simulation based on Carls-
son et al. (2001). Our simulation framework allows us to
analyze the interaction of an echo pulse with inclined ex-
tended scattering objects in detail and uses the gained in-
sight to model the relation between the echo pulse width
and the angle of incidence. The derived angles can then
be compared with current state-of-the-art methods, such as
neighborhood-based angle of incidence calculation with the
OPALS laser scanning software (Pfeifer et al. 2014). Here,
the comparison focuses on airborne LiDAR data and uses
a TLS dataset for additional validation. Furthermore, the
simulation framework provides a basis for the theoretical
investigation of the influence of the angle of incidence on
the temporal position of the maximum amplitude. This re-
lation can then be analyzed for different degrees of wave-
form model asymmetry, ranging from heavy-tailed curves
to symmetrical Gaussian pulses and provides insight into
a possible ranging bias for inclined targets.

The primary objective of our study is to simulate the
interaction of the laser pulse with inclined targets. Based
on this simulation, two topics of interest can be defined:
(i) the relationship between the echo pulse width and the
angle of incidence and how the relation between the two
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quantities can be used to estimate neighborhood-indepen-
dent angles of incidence, and (ii) the analysis of tempo-
ral shifts of the maximum amplitude through angled tar-
gets and how waveform symmetry influences the detected
shifts. Both topics are investigated by developing a sim-
ulation framework (Sect. 4.1) that enables analysis of the
full waveform in high temporal resolution (Sect. 4.2), fol-
lowed by establishing a relationship between the echo pulse
width and the angle of incidence (Sect. 4.3). The evalua-
tion metrics for the angle of incidence estimation are given
in Sect. 4.4. Furthermore, this study simulates the effects
of asymmetric laser pulses and their interaction with an-
gled surfaces (Sect. 4.5), introduces a method to compare
the simulation and real-world data (Sect. 4.6), and analyzes
the influence of the angle of incidence on the temporal po-
sition of the peak, that is, the range accuracy (Sect. 4.7).
The results of the simulation framework are then compared
with current state-of-the-art processing and real-world data
(Sect. 5). Lastly, we critically discuss and compare our re-
sults with established research (Sect. 6).

2 Theoretical Basis of Full-waveform LiDAR

Full-waveform LiDAR can be described using the mathe-
matical parameters influencing the interaction of the emitted

Table 1 Variables used throughout the paper.

Symbol Equation Description

c - Speed of light [m/s]

t - Return trip time [s]

R R=1c-t Range [m]

T - Echo pulse width at
standard deviation
[ns]

T, =12 Echo pulse width at
e [ns]

i) .

Ty T= s Full Width at Half
Maximum [ns]

2] - Beam divergence
[mrad]

o - Angle of incidence
[°]

o - Footprint radius at
R=0[m]

Fo Fo= %1/ 6-R?*+ e Footprint radius
measured at 1/e? at
target [m]

Fa Fo = C(ﬁ‘;) Semi-major axis
(Ellipse) [m]

g() Equation 2 Gaussian pulse

f@) Equation 3 Heavy-tailed curve

P pPEP The set of all LIDAR
points

laser pulse and the backscatter cross section of the target
(Wagner 2010). For the subsequent simulation of this inter-
action (Sect. 4), this section first introduces the mathemat-
ical notation used (Sect. 2.1) and outlines the fundamental
differences between the typical green and NIR laser pulses
as used in this study (Sect. 2.2).

2.1 Mathematical Notation

The mathematical notations used in this document are listed
in Table 1 together with a brief description, including the
units of measurement. On this basis, we present the em-
ployed equations.

2.2 Differences of the Emitted Pulse

The fundamental working principles of time-of-flight
LiDAR can be characterized by the following equation
(Synge 1930):

R=—c-t ey

Here, R is the range from the laser scanner to the tar-
get, ¢ is the speed of light (group velocity), and ¢ is the
return trip time. In full-waveform LiDAR, the entire re-
flected waveform is also recorded, in addition to the target
range. This waveform is affected by both the footprint size
at the target and the emitted laser pulse length, as well as
the backscatter cross section of the target. For example,
NIR LiDAR often uses long pulses measured at full width
half maximum (FWHM) with a small footprint (F;), while
bathymetric (green) LiDAR commonly uses short pulses
and a medium-sized footprint (Fig. 1a and c). The footprint
radius Fy for non-inclined targets refers to a circular foot-
print at distance R from the laser scanner, while for inclined
targets the footprint is elliptical, where the semi-minor axis
still corresponds to Fy and the elongated axis (the semi-
major axis) in beam direction is given by F.

The beam divergence 6 is either fixed or can be set be-
fore data acquisition, depending on the system used. How-
ever, the echo pulse width and amplitude depend on angle
of incidence (Wagner 2010). This is schematically illus-
trated in Fig. 1. For the two types of airborne LiDAR sys-
tems, we can distinguish two categories: (i) LIDAR with
short pulses and medium-sized footprints, for example typ-
ical topo-bathymetric (green) LiDAR and (ii) long pulses
and small footprints, e.g. commonly used in topographic
(NIR) LiDAR. This difference in laser pulse shape of the
two LiDAR systems leads to a difference in the relative
change after interacting with an inclined target. For typical
NIR LiDAR systems, this means that the relative change
of the echo pulse width is small for most observed angles.
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Fig.1 (a—d) Illustration of the differences in pulse width (left side,
emitted laser pulse) and echo pulse width (right side, reflected laser
pulse) depending on the LiDAR system with a footprint radius F;
and semi-major axis F,, after interacting with a Lambertian reflector.
Furthermore the angle « is greater or equal to 60° in panels b and d, so
that the pulse length holds true for ¢ > 0. Panel e displays the model
used to describe a general laser pulse, illustrating the different param-
eters affecting the pulse width at FWHM (7 ,) and footprint diameter
(2F,) measured at 1/e? of the laser pulse, which are further explained
in Table 1.

In contrast, for typical green LiDAR systems, the shorter
pulses and larger footprints lead to greater changes in the
echo pulse width. This can be observed, for example, in
the difference of reflectance on differently sloped roofs.
The differences in footprint size and pulse width become
noticeable because at angled targets parts of the pulse are
reflected at a later point in time (farther away in beam
direction). Thus, the absolute increase in length is more no-
ticeable for shorter pulses, as here even small changes lead
to larger relative changes (Laconte et al. 2019).

The changes in laser pulse width and amplitude are com-
mon for bathymetric LiDAR, but in fact the difference in
relative change after interaction with an angled target is not
attributed to the laser wavelength but to the illuminated sur-
face (footprint at ground level) and pulse length (FWHM).

3 Materials

To set up the simulation framework, this section introduces
the study area (Sect. 3.1) and presents the data sets used
to validate the angle estimation with current best practices
(Sect. 3.2).

3.1 StudyArea

The surveyed area is located in Loosdorf (48.2010° N,
15.4004° E; WGS 84) in Lower Austria. The region con-
tains a variety of structures with different orientations,
mainly houses with tilted roofs (Fig. 1), which can be used
to evaluate our estimation of the angle of incidence. For
the selected area of interest, three different datasets (one
terrestrial multi-scan-positions and two topo-bathymetric
airborne LiDAR datasets) are available that build a com-
prehensive foundation for the comparison of the angle of
incidence estimation. The focus on a topographic land-
scapes provides the additional advantage of roofs where
material and backscatter characteristics should be pre-
dominantly uniform for a single roof, while in aquatic
landscapes refraction, water surface interaction and water
column backscatter would influence the waveforms and
thus lead to less conclusive results.

Table2 The properties of the

2 T
two LiDAR systems deployed System A [om] 0 [mrad] Fo [m] 1/2 [ns]
during the data acquisition. Sensor 1 532 0.9 0.4-0.7 1.5
For each system the following Sensor I 1064 0.3 0.1-0.2 3.0
parameters are given: the Sensor IT 532 1.0 0.6-1.0 1.5
length A, b di
WAVCIENgH A, beall CIVEIBENCe g0 sor T 1064 0.2 0.1-0.3 3.0

0, footprint diameter measured
at 1/e? at ground level 25,
(without inclination) and the
FWHM of the emitted laser
pulse 77 5.
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3.2 LiDARData

The two main airborne data sets for this study were acquired
with the RIEGL VQ-880-GII topo-bathymetric (dual-wave-
length; NIR and green LiDAR) laser scanner (Sensor I)
and the RIEGL VQ-1560i-DW dual-wavelength laser scan-
ner (Sensor II). For each system, the parameters of the in-
dividual laser channels are shown in Table 2. The main
difference between the green channels of both systems is
that Sensor I has a constant off-nadir angle of 20° (RIEGL,
Laser Measurement Systems 2022b), resulting in a circular
scan pattern on the ground, while Sensor II acquires a pair
of parallel straight scan lines approximately orthogonal to
the flight direction with an angular offset of +14° (RIEGL,
Laser Measurement Systems 2022a). The off-nadir angles
vary between +30° (Fig. 2).

The scan parameters, such as the wavelength A, beam
divergence 6, 1/e? footprint diameter at ground level 2.5,
and the Full Width at Half Maximum (FWHM) of the am-
plitude T/, are shown in Table 2. Another important prop-
erty of the LiDAR system is the waveform sampling inter-
val, which amounts to 0.58ns for Sensor I and 1.01 ns for
Sensor II, for the green channel, respectively. Furthermore,
for the green channel datasets, the pulse repetition rate dif-
fers; the Sensor I dataset was acquired with a pulse repeti-
tion rate of 200kHz, and the Sensor II dataset with 700 kHz.
Both scanners support full-waveform recording, allowing
for the extraction of the returned echo pulses for each wave-
form based on the stored waveform samples. In addition
to the airborne data sets, a ground-based multi-scan-posi-
tion data set of the roofs (Fig. 3c) was acquired. The TLS
used for the stationary measurements was a RIEGL VZ-
600i laser scanner mounted on a tripod. This setup was used
for the multiple scan positions around the house shown in
Fig. 3c, acquiring a high resolution terrestrial point cloud

of the roof. The goal of this data set is to provide a much
denser point cloud compared to airborne data sets, which
allows the calculation of neighborhood-based angles of in-
cidence using a high-resolution dataset, thus improving the
quality of the calculated angles.

4 Method

The method of estimating the angle of incidence is based
on a simulation of the full-waveform data. First, we present
the emitted waveforms that are used as input for the simu-
lation in Sect. 4.1, initially a gaussian pulse and a heavy-
tailed curve. Second, the impulse response of the angled
plane (differential backscatter cross section) is described
in Sect. 4.2. The functions are then convolved and the
generated output is used to establish a relationship be-
tween the angle of incidence and the echo pulse width
(Sects. 4.3 and 4.4). Lastly, the analysis is extended by
additional waveforms with varying degrees of symmetry
between the heavy-tailed curve and the gaussian pulse to
analyze the effect of laser pulse symmetry and angle of
incidence on the temporal position of the waveform maxi-
mum (Sect. 4.5-4.7).

4.1 Initial System Waveform

To model the initial waveforms sent out by the laser scanner,
a number of suitable functions exist, ranging from a Gaus-
sian pulse model to more specific functions that more accu-
rately reflect the actual laser waveform characteristics. For
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Fig. 2 a Illustration of the circular scan pattern of the green channel of Sensor I with a constant off-nadir angle of 20°. b Linear scan pattern of the

NIR channel of Sensor I ¢ Linear scan pattern of Sensor II.
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Fig.3 a Map of the study area in
Loosdorf, Lower Austria (Bun-
desamt fiir Eich- and Vermes-
sungswesen 2024), where the
first dataset (b) is marked with B
and the second (c¢) with C. In
contrast to the first dataset (b),
which only consists of air-
borne LiDAR data, the second
dataset (c¢) was surveyed with
both airborne and terrestrial
LiDAR; the latter as an addi-
tional reference.

the simulation in this paper, we use two initial functions:
a Gaussian pulse (Fig. 4a) given by

g(t) = e, )

and a heavy-tailed function (Fig. 4b) as defined by Carlsson
et al. (2001),

N2 L
1) = ((f) e 120 3)

otherwise.

There, T is given by
Tee __ Tip

4 2. /210g(2)

Both functions exhibit individual characteristics, and
they differ mainly in the degree of asymmetry observed
after the signal peak. Compared to the commonly used
Gaussian model, the heavy-tailed curve better captures the
slightly asymmetric shapes of actual laser pulses. However,
the Gaussian model is more commonly used and represents
an idealized pulse shape. This allows us to account for
the impact of asymmetry in our analysis of the different
waveforms. Thus, the introduction of both functions creates
a more versatile simulation framework.

T =

“)
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Fig.4 a Gaussian pulse g(#) and b heavy-tailed curve f{r) with T/, =
1.5ns and thus 7 as shown in Eq. 4.

4.2 Waveform Simulation

For the pulse interaction with an inclined target, we en-
hance the simulation framework of Carlsson et al. (2001)
with a new parameterization. This previous work develops
a framework of laser beam propagation theory, which uses
a heavy-tailed curve f(r) (Fig. 4a) and an angle-dependent
function to compute the interaction of a laser pulse with an
angled target. We use the angle-dependent function defined
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Fig. 5 Illustration of parameters in the simulation framework for an in-
clined LiDAR footprint. The parameters of the elliptical LIDAR foot-
print are highlighted by the orange semi-major axis F,, outlining the
assumed geometry for the angled surfaces shown in the top-down view
of the point cloud below.

by Carlsson et al. (2001) and adapt the pulse-target inter-
action to the geometry of airborne laser scanning as shown
in Fig. 5. The angle-dependent function A (z, o) is defined
through Eq. 5, taking into account the incidence angle and
footprint size in the x-y-plane. In Eq. 5, the interaction and
the illuminated area of the laser pulse are given as a con-
volution, with é being the Dirac delta function.

2*}

h(toc)—// 7" s

«sG-@) dx dy.

Here, F, is the semi-major axis of the footprint, c is the
speed of light, and o denotes the angle of incidence. The
angle is defined so that « = 0 when the surface normal
vector and the laser beam vector coincide. By choosing the
following substitution

_ sin(a)x
T ¢ “sin(a)’

(6)

=
|

we can rewrite the previous integral of Eq. 5 using the new
parameterization, so that later the translation property of
the Dirac delta can be used to simplify the integral.

7 —g ‘ _ sin(o)x
h(t, a)—/ / 5([ — ) -
sin(«) dx d
(smw)) ( ) e

_ sin(a)x

¢ 1
= hm
sm(a) x—>00

72 ()

sln(ot)v)

(3)
8(x (-t)) dx dy

Sln(()t) )

: m@// HE

-8(x—=(-t)) dx dy

2
/ / e }-_th Sln(()t))
sm(a)

7.8 (Xx—=(-t)) dx dy

(10

By definition, we know that F, = and thus we get

CO()’

~ 2 ~ 2 ~ 2
SR N S I L
- (]—'a sin(oz)) B ( Fo sin(oz)) - (]:0 tan(oz)) .

cos()

The utilization of this transformation, applied to A(z, «)
together with the translation property of the Dirac delta
function then yields

2
o) 9] ~ 2
- ()
e 0 e o sin(a)
- —-00

h.o) =2 (11)
28 (X=(=1)) dX dy
- -e'(fégw) /we'%& dy (12)
sin(o) —00
_ c e (}'Olan(ot)) \/_]:0 (13)

sin(«)

Furthermore, we multiply Eq. 13 with cos(«) to account
for the change in amplitude of a Lambertian reflector, as
the amplitude is also an angle-dependent quantity (Hartzell
et al. 2015). This improves the visual comparison of the
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different waveforms but does not have a direct influence on
the width calculation later on. Ultimately, we get:

h(t,a) = cos() - h(t, ) (14)
- . g_(}—o+tn(0!)) . \/;-FO
sin(a)

2
= @ . e_(f():;n(a)) X
tan(o)

= cos(w) -
(15)

We can now simulate the received full-waveform
Srefiectea (£, @) for each angle. The received full-waveform
is therefore defined as the convolution of the initial pulse
f(t) and the differential backscattering cross section for the
angled target h (t, ). This convolution is given by the fol-
lowing equation, where £ is the variable of the convolution:

Ftecwa(t) = (f * ) (t.) (16)

o ORGP (a7

4.3 Angle Estimation

Based on the simulation framework introduced above, we
can now present a method that estimates the angle of inci-
dence based on the width of the echo pulse. For this, we
create a simulated curve between the echo pulse width mea-
sured from the simulated waveforms and the angle of inci-
dence. The simulated echo pulse (Eq. 17) can be evaluated
at T, for each input angle and converted to FWHM (Eq. 4).
We calculate the echo pulse width from the recorded laser
waveform as the FWHM based on Gaussian decomposition
(Ullrich and Pfennigbauer 2011), as this is a standard full-
waveform processing technique.

For the general application of this newly introduced
method, some limitations of the data have to be considered
to avoid wrong matching between width and angle of inci-
dence. The two main constraints are that (i) the echo pulse
width is within the range of the corresponding simulated
curve and that (ii) the extracted width corresponds only to
a single return pulse. To address the prior, a threshold is
set for the minimum width of the simulated curve for each
data set. If the echo pulse widths are below that threshold,
no angle of incidence is assigned for this point, as the
angle would incorrectly be zero. The latter constraint is the
consideration of single returns only. The methodology is
only applicable for fully illuminated targets, i.e., the laser
footprint completely covers a single object.

To later compare this new method with current best prac-
tices regarding angle-of-incidence calculation, we introduce
the respective workflows here. For this, we use the point
cloud processing software OPALS (Pfeifer et al. 2014).

@ Springer

There, the module opalsNormals is used to estimate the
3D surface normal vectors of the illuminated laser spots
based on locally neighboring points. We define the neigh-
borhood as follows: k-nearest neighbors (k=32) and quad-
rant-wise point selection, i.e, the 8 nearest neighbor points
are selected in each quadrant around the LiDAR point.
We estimate the normal vectors using a robust plane fit-
ting approach, which detects and eliminates outliers within
a robust least squares adjustment framework. These normal
vectors can then be combined with the laser beam vectors,
derived from the flight trajectory, to calculate the angle
of incidence. This provides a neighborhood-based angle of
incidence for each point in the point cloud and can be com-
pared to the waveform-based angles in Sect. 5.

4.4 Evaluation Metrics

In the following, we introduce the metrics used for the
qualitative evaluation of the incidence angles derived from
the echo pulse width. For this, let «*™ and o™ be the
angle of incidence calculated using our waveform-based
and standard neighborhood-based methods, where n € N is
the number of incidence angles calculated. Then the point-
wise difference in angles is defined as

A(ai)=o¢,‘-‘br—oclwfm forO0 <i <n. (18)

With this, we can define the following different evalua-
tion metrics

1 n
AD = — A 19
. Z} (cr) (19)
MD = median; A(;) (20)
1 n
AAE = — A 21
. Zl| (e)| @1)
MAE = median; |A(a;)]. (22)

The used acronyms are Average Difference (AD), Me-
dian Difference (MD), Average Absolute Error (AAE) and
Median Absolute Error (MAE).

4.5 Simulating Degree of Asymmetry in the Initial
Laser Pulse

The simulation based on the heavy-tailed curve of Carlsson
et al. (2001) reflects only one of many possible waveforms,
which can be used to approximate the initial waveform.
For this reason, we broadened our analysis to include a se-
lection of different waveforms, ranging from a symmetric
Gaussian pulse to the asymmetrical heavy-tailed curve in-
troduced previously. With the Gaussian pulse g(#) as defined
by Eq. 2, we can calculate the convolution gefiected(?, @) of
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the Gaussian pulse g(7) with the angle-dependent function
h(t,a), given by

greﬂected(lﬂ Ol) = (g * ﬁ) (Z, O[) (23)

- [0 ¢(®) -t~ £.0) dE. (24)

This can also be extended to a range of functions in
between the Gaussian pulse and the heavy-tailed curve by
introducing homotopy (Arkowitz 2011). We define the con-
tinuous homotopy function from the Gaussian pulse to the
heavy-tailed curve as:

H:[0,1] xR - R,

(25
H(s,t) > s- f(t)+(1-s)-g(2).

The generated spectrum of functions, created by the ho-
motopy for the parameter s € [0, 1], can now be applied as
the initial waveform, serving as the basis for the convolu-
tion with the angle-dependent function. This allows for the
analysis of potential ranging effects caused by shifts of the
maximum peak.

4.6 Waveform Averaging and Curve Fitting

In order to verify the overall alignment of the selected wave-
forms for the simulation with real-world data, and to pro-
vide a basis for the later discussion, this section presents the
topic of waveform averaging and how the selected wave-
forms can be fitted to the averaged waveforms. Using the
method of Rhomberg-Kauert et al. (2025), recorded wave-
forms can be averaged and used to outline general trends
across a target (roof), which enables the subsequent com-
parison of the two selected initial waveforms, namely the
Gaussian pulse and the heavy-tailed curve. Waveforms re-
flected from the same target, in this case the same roof, can
be aligned by the first recorded sample, under the simplified
assumption that the waveforms have the same phase. This
provides multiple amplitudes, one from each waveform, for
each sample interval, which can then be merged using the
average across the amplitudes of each sample interval. The
discrete representation of the averaged waveform of the tar-
get can then be interpolated to a continuous curve. To com-
pare the Gaussian pulse and the heavy-tailed curve with
these interpolated curves, the two pulses can be fitted to the
data using least-square optimization, in this case using the
SciPy (Virtanen et al. 2020) curve fitting module.

4.7 Ranging Based on Peak Detection

Lastly, to analyze the potential influence of the angle of
incidence on the temporal position of the full-waveform
maximum, we use the introduced homotopy (Eq. 25) to sim-
ulate different initial pulses. The primary analysis focuses
on investigating the influence of the angle of incidence on
the temporal position of the waveform maximum. In addi-
tion, the spectrum of waveforms allows us to analyze the
influence of signal asymmetry for both the simulated wave-
form and the Gaussian fit of the same curve. This variation
of different asymmetric waveforms and the difference be-
tween direct peak extraction and Gaussian fitting enables
a further generalization, both highlighting the influence of
the incidence angle, as well as providing insight how the
assumed laser pulse shape influences the simulation.

For each simulated echo pulse, the peak can be extracted
from the pulse without additional tools needed since the
temporal resolution of our simulated waveform curves is
arbitrarily high. For this, the simulation uses a 256-fold
temporal resolution compared to the actual measurement
rate of Sensor I, enabling a direct extraction of the time
stamp of the maximum amplitude. The determined peak po-
sition on the temporal axis enables the comparison of each
angle in an idealized setting, and thus the temporal change
of the echo pulse peak. In addition, we can monitor the
change related to the angle of incidence without account-
ing for noise. There, we measure two types of distance, the
temporal shift of the pulse translated to distance and an ide-
alized orthogonal distance, where we multiply the measured
distance with the cosine of the input angle. This idealized
orthogonal distance is selected as a secondary measure, as
the theoretical temporal shift of the maximum amplitude
would result in a shift along the laser shot direction. The
shift would mostly be observed in plane-to-plane distances,
which is approximated by the orthogonal distance.

For the analysis presented, it is important to note that we
focus on peak detection applied directly to the simulated
signal, as well as Gaussian pulses fitted to the simulated
waveforms. This approach does not necessarily correspond
to the classical target extraction methods used in measure-
ment settings because the simulation is based on a higher
sampling rate and is free of noise.

5 Results

This section is divided into three main parts. We present
(i) the results of the simulation framework, outlined in
Sect. 4.2, together with a comparison of the selected wave-
forms and real-world data (ii) the application of the simu-
lated relation between the angle of incidence and the echo
pulse with for real-world data, and (iii) the analysis of the
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Fig.6 a Simulated echo pulses based on our simulation outlined in
Sect. 4.2 and the parameters of the green channels of System I, where
Jrefiectea (1, @) is the convolution of the heavy-tailed curve f(r) and the
differential backscattering cross section for the angled target h(z, o).
b Simulated curves for different settings of the green channel of Sys-
tem I ¢ Simulated curves for different settings of the NIR channel of
System 1. For both (b) and (¢) 27 corresponds to the footprint diame-
ter at ground level with zero incidence angle.

temporal shift of the maximum amplitude in relation to
the angle of incidence and asymmetry of the initial laser
pulse. For each part, different aspects are highlighted and
a comprehensive analysis of the overall effect of the angle
of incidence on the waveform is presented.

5.1 Relation of Echo Width and Angle of Incidence
Each curve simulated in Fig. 6a is based on the numerical

convolution introduced in Sect. 4.2. In Fig. 6a, the simula-
tion framework shows the change of the waveform shape
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with increasing angle of incidence. Both the decline in am-
plitude, aligned with the cosine law, and the widening of
the pulse with increasing angle of incidence are clearly vis-
ible. The measured width for each input angle can then be
plotted as a curve, which demonstrates the relation between
the echo pulse width and the angle of incidence (Fig. 6).
In Fig. 6b, the selected parameters represent the typical
short laser pulse and medium-sized footprint common in
bathymetric LiDAR in alignment with the green channel of
System I, while Fig. 6¢ displays the simulated curves for
the settings of the NIR channel of System I.

We observe that the curvature of the curve in Fig. 6b, c
drastically increases at higher beam divergence or larger
ranges. Both lead to an increase of the diameter of the laser
footprint, which entails a clearly visible effect on the width
of the returned echo pulse. The influence of the footprint
size on the slope of the simulated curves can be seen in
Fig. 6b, where the curves for the smallest and largest foot-
print differ significantly in curvature. The larger footprint
leads to an earlier onset of the curvature, displaying a visible
difference in echo pulse width at approximately 20—30°.
In contrast, the longer pulse width and smaller footprint of
the NIR channel lead to more moderately sloped curves,
where doubling of the echo pulse width are not observed
until high angles are reached (greater 70°), even for an ex-
aggerated footprint diameter of e.g. 0.5m at 0° angle of
incidence (Fig. 6¢).

5.2 Comparison of Different Waveforms

With the introduced waveform averaging, the two initially
selected input curves for the simulation can be validated
and provide insight if the selected laser pulse shapes ade-
quately represent real-world. Here, the fitted functions are
the heavy-tailed curve f{(f) and the Gaussian pulse g(#). De-
pending on t, amplitude and temporal position were op-
timized during fitting, using least squares optimization to
match the averaged waveform (Fig. 7). In contrast to the
simulation outlined in Sects. 4.2 and 4.5, these functions
were chosen because common post processing similarly fits
functions to the recorded waveform to extract target echoes.
This also extends to the objective of this particular analysis,
which focuses on comparing the two waveforms in terms
of pulse symmetry and alignment with real-world data.
The alignment with the real-world data can be seen in
Fig. 7. For the three selected roofs with varying slopes,
in particular 10° (Fig. 7a, b), 20° (Fig. 7c, d) and 60°
(Fig. 7e, f), an average waveform and a fitting of the se-
lected input curves were calculated. In the panels A-D of
Fig. 7, the echo pulse displays the standard initial peak
followed by the ringing effect, which denotes artificial sec-
ondary echoes. For the 60° angles of incidence, the ringing
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Fig.7 Comparison of the heavy-tailed curve f{(f) and the Gaussian pulse g(¢) fitted to the averaged waveforms of three different roofs, where the
angles of incidence for the roofs are 10° (a and b), 20° (¢ and d) and 60° (e and f). For each plot the blue waveforms are the recorded data. The
yellow line is the interpolated averaged waveform and the dashed black line represents the fitted received laser pulse response.

effect merges with the echo pulse, causing a longer right-
hand side of the pulse (Fig. 7e, f).

This is also where the two fittings of f{r) and g(#) de-
viate, as the heavy-tailed curve partially incorporates the
ringing effect, and thus captures a more asymmetric shaped
waveform. However, the Gaussian fitting mostly captures
the initial peak of the echo pulse. Thus, the Gaussian pulse
estimates a echo pulse width smaller than that of the heavy-
tailed curve. In numbers, this translates to 1.66ns, 1.55ns
and 1.61 ns (heavy-tailed, Gaussian and averaged waveform
FWHM) for the 10° roof and 3.29ns, 3.24 ns and 3.05ns for
the 60° roof. This outlines that both the heavy-tailed and
Gaussian pulses deviate from the generalized echo pulse.
However, comparing all panels of Fig. 7, the two selected
input curves show a high alignment with the averaged wave-
forms and are able to capture the waveform shape with only
minor deviations, for example, due to the ringing effect.
Therefore, the selected curves provide a suitable foundation
for the simulation and estimation of the angle of incidence,
but future work could extend the simulation by incorpo-
rating real-world data or the system waveform of the laser
scanner.

5.3 Angle Estimation

The previously introduced relation of the angle of incidence
and echo pulse width can now be applied to the datasets of

Sensors I and II. For the two datasets, the proposed estima-
tion method is further compared with current best practices,
namely the angle of incidence estimation with neighbor-
hood-based surface normal vector calculations. The com-
parison between the two incidence angle estimation meth-
ods can be seen in Fig. 8.

Panels A and B of Fig. 8 show distribution plots (Ker-
nel density estimation (KDE) plots) that present the align-
ment of the neighborhood-based and waveform-based an-
gles of incidence for Sensor I and Sensor II, respectively.
Panel C shows box plots of the evaluation metrics de-
fined in Sect. 4.4. For Sensor I, the distribution shows an
overall match around 50-60°, while the rest of the dis-
tribution shows a larger spread of the angles in the com-
parison (Fig. 8a). Sensor II displays larger discrepancies
than Sensor I at incidence angles below 20°, with the in-
cidence angles of both methods becoming more similar
around 30-40°. Furthermore, the differences in point den-
sity, caused by the differences in pulse repetition rate, can
also be seen in the distributions. Due to the differences in
pulse repetition rate, Sensor I has a lower ground point den-
sity compared to Sensor II. Similarly, the differences in the
scan pattern are also visible. Sensor I has a constant off-
nadir scan angle, which in turn leads to higher angles of
incidence than the linear scan pattern of Sensor II. There-
fore, for the same area of interest, the incidence angles are
lower for Sensor II than Sensor I.
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Fig.8 a Kernel density estimation (KDE) plot of the neighborhood-
based angles of incidence and echo pulse width-derived angles of in-
cidence for the Sensor I dataset. The line of perfect fit is shown as
the blue line across the plot. b Analogue KDE plot for the Sensor 11
dataset. ¢ Evaluation of the differences between the echo pulse width
and neighborhood-based angles of incidence, using the AD and MD as
well as the AAE and MAE for the Sensor I and II dataset.

From a qualitative perspective, analysis of the data set
from Sensor I reveals a high degree of similarity between
the neighborhood-based and pulse width-based angles of
incidence. The distribution shows a low degree of uncer-
tainty, particularly for high angles of incidence (Fig. 8a).
In comparison, the proposed method displays a less accu-
rate performance for the Sensor II dataset (Fig. 8b). There,
the pulse width-based angles of incidence overestimate the
incidence angles compared to the neighborhood-based cal-
culation.

On the quantitative side, the comparison of incidence
angles for Sensor I has a spearman correlation of 0.52 and
for Sensor II the spearman correlation is 0.53, showing
similar results.

The differences in quantitative and qualitative results of
Sensor I and Sensor II (Fig. 8a, b) can also be seen in
Fig. 8c. There, the box-plots of the mean and median differ-
ences are centered around zero for Sensor I, while Sensor 11
shows a score close to 10°. These differences correspond
to the deviations in the KDE plot from the line of perfect
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fit in Fig. 8a, b, while the quartiles display a similar extent
underlining the similar correlation values. For Sensor II, the
lower scores are related to the general overestimation of the
angles of incidence (Fig. 8b). However, the mean and me-
dian absolute errors show similar results (Fig. 8a, b), which
reflects similar spearman correlation, since the absolute val-
ues correspond to the differences of both distributions in the
correlation analysis. Both datasets show a moderate correla-
tion between pulse width-based angles and neighborhood-
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based on normal vectors calculated with OPALS; ¢ TLS angles based
on normal vectors calculated with OPALS.
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based angles, which aligns with the non zero absolute differ-
ences. The differences between the box plots can possibly
be attributed to differences in the sampling rate and scanner
setting, as well as to the different scan patterns. The non-
constant off-nadir angle of the Sensor II scanner is one of
those factors that might be responsible for the inflated esti-
mation of the echo pulse width-based angles of incidence,
similar to the different deviations from the line of perfect
fit seen in the distribution shown in Fig. 8a, b.

5.4 Comparison to Terrestrial Laser Scan

The significantly higher density of the TLS point cloud
can be used to improve the resolution of the neighborhood-
based angle of incidence. Here, a search radius of 0.4 m and
a point limit of 2500 neighboring points were selected for
the same robust surface normal estimation using OPALS
(Pfeifer et al. 2014). OPALS uses robust least squares ad-
justment for estimating the best fitting plane parameters,
reducing the effect of outlier points on chimneys, anten-
nas, or the like. The extracted incidence angles were then
matched to the closest points of the ALS point cloud of
Sensor 1.

The visual comparison of the pulse width-based ALS
incidence angles and the neighborhood-based TLS angles
of incidence shows a good alignment for the roof on the
left and right in Fig. 9a, c, while the roof in the center of
the figure shows both matching and deviating angles of in-
cidence. The angles derived for both datasets match well
with the exception of the angles close to the roof ridge
(Fig. 9b). This general alignment matches the KDE plots of
Fig. 10. In panels A and B, both distributions are centered
around the line of perfect fit. However, the distribution of
Fig. 10a displays a larger deviation from the perfect fit line
compared to Fig. 10b. Both distributions display similar
characteristics in the center and a gap in the angles of in-
cidence (Fig. 10a, b). This gap is caused by differences in
roof orientation (Fig. 9).

The differences between the waveform-based estimation
and the neighborhood-based workflow are also visible in
the different types of deviation that both methods have
(Fig. 9). The waveform-based estimation is sensitive to dif-
ferences in the shape of the surface, causing distortions

Table 3 Median value of the scores shown in Fig. 9c. Average Differ-
ence (AD) and the Median Difference (MD), Average Absolute Error
(AAE) and Median Absolute Error (MAE) for all point wise differ-
ences between the selected method and the angles of incidence ex-
tracted from the TLS.

Method AD MD AAE MAE
[deg] [deg] [deg] [deg]

Waveform 0.59 7.40 13.03 10.55

Neighborhood 2.45 -2.71 6.83 2.12
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Fig. 10 a Kernel density estimation (KDE) plot of the ALS (Sensor I
dataset) echo pulse width angles and TLS neighborhood-based angle of
incidence. The line of perfect fit is shown as the orange line across the
plot. b Analogue KDE plot for the neighborhood-based ALS and TLS
angles. ¢ Evaluation of the differences between the TLS neighborhood-
based an and ALS angles of incidence, using the using the AD and MD
as well as the AAE and MAE for the Sensor I.

when the laser beam interacts with objects mounted on
the roof (chimneys, dormers, etc.). This is, for example,
the case for the easternmost house, as the solar panels are
mounted on the south roof side and the north facing side fea-
tures multiple smaller objects (Fig. 3c). In contrast, the ALS
neighborhood-based angles deviate from the TLS neighbor-
hood-based angles around the ridge line of the roofs, where
the different faces of the roof intersect, and therefore the
plane fitting performs poorly, due to the large footprint of
the green channel of System I (Fig. 9).

Both datasets match for the center of the distributions,
but display a difference at the tail of the distribution. Table 3
documents that the waveform-based estimation performs
worse for most measures, except the average difference. In
Fig. 9a the extracted incidence angles fluctuates, which cor-
responds to fluctuations in the underlying echo pulse width.
Here, outliers in the waveform can potentially lead to an
increase noise in the pulse width angles, which then corre-
sponds to varying angles on the same roof. This in addition
to the influence of differences in the roof material poses
challenges to the presented method (Fig. 3c). For example,
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Fig. 11 Simulation of different possible echo pulses based on the Sensor I dataset. a Simulated LiDAR waveforms based on the convolution of
a Gaussian pulse with the angle-dependent function and the associated ranging effects, for the parameters of the green channel. Each curve has the
maximum amplitude marked (vertical line) and is colored by angle of incidence. The second second plot in the right column shows the associated
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solar panels on the roof (Fig. 3c) would affect the reflected
echo pulse, while flat constructions only marginally change
neighborhood-based angles of incidence. In summary, the
results shown in Fig. 10 show general similarity between
the pulse width-based and neighborhood-based angle of in-
cidence. The differences visible between the two angle of
incidence methods are visible in the deviations of the KDE
plots, where the methods vary in the density close to the
perfect fit line (Fig. 10). The advantages of neighborhood-
based incidence angles for planar surfaces can be seen in
the inner region of the roofs (Fig. 9b), while deviations are
observed on the roof ridge. The neighborhood-based angle
of incidence estimation show a lower deviation from the
TLS angles compared to the pulse width-based angles of
incidence, but also in this case the alignment is not optimal
(Fig. 10c¢).

5.5 Ranging Effects Based on Incidence Angle

In addition to the well-known change in the amplitude of
the echo pulse, there is also a less distinct ranging bias
observable at high angles of incidence. There, the pulse
width and asymmetry of the waveform determine the shift
of the waveform peak (Fig. 11).

The effects displayed in Fig. 11 illustrate the role of the
waveform convoluted with the angle-dependent function.
A Gaussian laser pulse (Fig. 11a, ¢) shows no temporal
movement of the maximum amplitude, as the pulse is sym-
metrical and therefore no heavy-tailed part interacts with the
angle-dependent function during the convolution. The other
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panels display the convolution of gradually more asymmet-
ric curves with the angle-dependent function. In detail, the
initial functions are either a homotopy H (s, t) of a Gaussian
pulse and the heavy-tailed curve or, alternatively, the heavy-
tailed curve f(7) itself. In both cases, a continued increase of
the temporal offset, i.e. ranging bias, can be observed with
increasing angle of incidence. This shift of the amplitude
maximum towards a later point in time leads to an increase
in the distance along the beam direction, which can be ob-
served in the simulations of both the green and NIR channel
of Sensor I. The influence of the beam divergence and the
differences in FWHM can be seen in the shape of the curves
in the ranging plots (Fig. 11). There, the short pulses and
high beam divergence make the echo pulse more suscep-
tible to the influence of the angle of incidence compared
to the NIR channel of the same sensor. It is noted that the
range does not necessarily correspond to the peak position,
but a systematic effect is still visible in the simulation.
Furthermore, Fig. 11 shows the deviations for different
angles of incidence for initial laser pulses with varying de-
gree of asymmetry. There, the cosine function has a strong
influence at higher angles of incidence and decreases the
factually measured range biases when measured as orthog-
onal distance from the reflecting surface. In addition, we
also applied Gaussian fitting to the simulated echo pulse
for the extraction of the amplitude maximum. The main
difference between both simulations is that fitting a Gaus-
sian pulse produces less temporal shifts compared to the
unfitted data, for example the maximum shift of the green
channel is decreased from 10 to 5cm for large angles of

b Gaussian fit for green LIDAR simulation
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Fig. 12 Simulation of the temporal shift of the maximum amplitude for different simulated waveforms of Sensor I. The x-axes display different
steps of the input homotopy between the Gaussian pulse and the heavy-tailed. a Convolutions of different input functions for pulses corresponding
to the properties of the green LiDAR channel of Sensor 1. Each ranging offset is colored by the angle of incidence. b Gaussian pulse fitting of the
results of the convolutions. ¢, d The same analysis as in the first two panels applied to the NIR channel of Sensor 1.
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incidence, e.g. greater than 50° (Fig. 12a, b). Therefore, the
simulated results show that there is a detectable distance
effect depending on the initial waveform of the laser pulse
and the fitted function during peak detection.

5.6 Influence of Echo Pulse Symmetry

The difference in symmetry of the echo pulse has an in-
fluence on the temporal position of the maximum ampli-
tude (Fig. 11). The shifts are visible in the simulated echo
pulse but, as processing often applies Gaussian fitting, the
differences might partially be decreased by the fitting of
a symmetric waveform. Therefore, the analysis uses ho-
motopy curves to simulate different degrees of symmetry
and further analyzes the influence of Gaussian fitting on
the changes in the temporal shift (Fig. 12). To fully analyze
these influences, the waveforms are simulated with 256-fold
temporal resolution and waveform parameters as reported
in Table 2 for the green component of Sensor I. There, the
temporal shift of the maximum amplitude changes when
moving away from the symmetric Gaussian pulse and to-
ward the heavy-tailed curve (Fig. 12b). This effect is due to
the convolution with the asymmetric part of the distribution,
as this asymmetry delays the maximum amplitude, which in
turn corresponds to a stronger ranging bias with increasing
angles of incidence. This emphasizes the importance of the
appropriate waveform model when considering range ef-
fects that are related to the angle of incidence in real data.
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Fig. 13 Plan view of a selected subset of roofs from the Sensor I
dataset. a Colored by the angles of incidence derived from beam direc-
tion and surface normal vectors. b Colored by the angles of incidence
based on the proposed estimation method.
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It also highlights that an estimate of the incidence angle can
improve laser range estimation, especially for pulses with
short duration and large beam divergence.

6 Discussion

Our simulation framework helps to investigate a wide spec-
trum of applications, ranging from the incidence angle es-
timation to the analysis of potential range biases. The re-
sults display an overall applicability of the proposed wave-
form-derived angles, but also outline challenges for the new
method. For the ranging analysis, the results presented re-
main purely theoretical. Thus, a critical discussion of the
results in light of established research is presented in the
following.

6.1 Angle Estimation

In Sect. 4, we introduced a new method to estimate the
angles of incidence based on individual laser waveforms.
When comparing the results of this method with cur-
rent standard practices, both methods face distinct chal-
lenges (Fig. 13). Similarly to neighborhood-based methods
profiting from higher point densities, a higher waveform
sampling rate would potentially improve waveform fitting
and thus improve waveform-based angle estimation. For
neighborhood-based plane fitting with optimized parame-
ters, more supervision might be required, which deceases
autonomous processing.

In addition, real-world data is generally more prone to
local variation in texture and reflectance, as difference in
exposition causes inhomogeneous deterioration of material.
This could be addressed through laboratory experiments.
Therefore, future work might include data testing in a con-
trolled laboratory environment, which is outside the scope
of this study.

For the proposed angle-of-incidence estimation method,
the accuracy of the estimation improves with a larger beam
divergence or longer measurement range. This is due to
the fact that relative changes in the echo pulse width be-
come more detectable (Sect. 5.1). The relation of absolute
and relative change in echo pulse width under those con-
ditions exceeds measurement inaccuracies, allowing each
echo pulse width to be distinctly matched to an angle of
incidence.

This contrasts previous work, which focused on NIR
LiDAR system with long pulses and small footprint and pre-
sented no clear relation between the echo pulse width and
the angle of incidence for the NIR LiDAR system (Pfennig-
bauer et al. 2013). However, the results in this study build on
the difference in laser pulse shape, namely the shorter pulse
and larger footprint diameter. For these initial laser pulses,
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the recorded echo pulse width displays a larger relative
change at smaller angles of incidence, and thus a relation
between the two quantities can be established and applied
to real-world data. To increase the accuracy of the method
w.r.t. detecting minimal changes in echo pulse width, higher
receiver bandwidths and sampling rates would be required.
Therefore, in certain cases, existing methods based on sur-
face normal estimation, e.g., using OPALS (Pfeifer et al.
2014) may yield better results. However, in all applications
with medium footprints and short pulses, the new method
offers the possibility of estimating a neighborhood-inde-
pendent angle of incidence, which improves current best
practices by eliminating the parameterization of the neigh-
borhood selection process.

6.2 Comparison Based on TLS Data

Comparison of both methods with the TLS data allows us
to estimate the performance of both the ALS neighborhood-
based method and the proposed method. The general com-
parison of both methods using the point-wise comparison
shows that the ALS angles based on the point neighbor-
hood yield better results for the selected roofs (Fig. 10).
For the TLS data set, the partial obstruction of the south-
ward roof with solar panels and smaller objects sets sub-
optimal conditions for the echo pulse width-based estima-
tion. Therefore, the neighborhood-based method displays
expected advantages which would decrease for curved sur-
faces or lower point densities. In conclusion, the newly
introduced method is able to estimate angles of incidence
quite well, showing a general alignment compared to cur-
rent best practices. It has to be noted that compared to high
resolution (e.g. TLS) data, neighborhood-based method out-
performs the pulse width-based angle of incidence method.
However, the advantage of extracting the angle of incidence
information using the echo pulse width is that this can be
done directly from the recorded waveform, and thus no ad-
ditional processing is required.

6.3 Influence of Beam Divergence and Pulse Width

The variance in the appearance of the relation between the
width of the echo pulse and the angle of incidence outlined
in Sect. 5.1 explains why the estimation of the incidence
angles based on the width of the echo pulse has not been
quantified in previous research (Pfennigbauer et al. 2013).
There, small beam divergence and typical airborne mea-
surement distances of several hundred meters, in combina-
tion with a long initial pulse width, make the relative change
barely noticeable at low angles less than 30° (Fig. 6). This
especially extends to even smaller footprints in typical NIR
LiDAR. Therefore, in cases of low beam divergence or
close-range scanning applications, the relative change of

the echo pulse width would hardly be detectable with stan-
dard laser scanning devices, and precise matching to the
angle of incidence would therefore fail.

Furthermore, the functions that are used to describe the
echo pulse have a non-neglectable impact on the estimated
FWHM as seen in Fig. 7. There, the focus on the the-
oretical framework diverges in the expected FWHM and
calculated FWHM, as the laser class of the different sys-
tems would suggest a 1.5ns FWHM for the green channel
and 3ns for the NIR channel, while the simulation starts
at 2.2ns and 4.5ns respectively. This difference in pulse
width is not unexpected, as the reflected echo pulse is al-
ready a convolution of the unknown pulse emitted by the
LiDAR system and the interaction with the target (Wag-
ner et al. 2006). However, the comparison with real-world
data (Fig. 7) shows a lower increase than the output of the
simulation. There, factors such as function or parameter se-
lection have a large influence on the initial starting point;
one larger factor not taken into account is the asymmetric
change in footprint size with target inclination, which at
this point remains future work. During the application of
the simulation to real-world data, the pulse-width-based in-
cidence angles display an overall alignment with the neigh-
borhood-based angles of incidence, hence supporting the
theoretical model of the simulation. While we use NIR and
green laser pulses of the presented scanners for our study,
they rather serve as role models for systems with long pulse
duration and small beam divergence (NIR) and short pulse
duration and larger beam divergence (green), respectively.
In fact, the findings presented in this study are not related
to the laser wavelength, but the applicability of the pre-
sented method only depends on the duration-width ratio of
the emitted laser pulses (Wagner et al. 2006). Therefore,
the two wavelengths commonly differ in laser scanning pa-
rameters, but the differences in simulated recorded full-
waveforms do not correspond to the wavelength itself.

In conclusion, the application of the proposed estima-
tion method requires a certain minimum laser footprint to
be practically viable. Our proposed method is therefore bet-
ter suited for topo-bathymetric LIDAR sensors employing
short (1.5ns) but broad (1 mrad) pulses compared to LiDAR
devices used for topographic mapping, which typically em-
ploy narrow beams (0.2mrad) and longer pulse duration
(3ns). However, our method also has potential for future
improvements through empirical data or more advanced
simulations.

6.4 Ranging Effects
The ranging effects outlined in Sect. 5.5 reveal new in-
sights related to hypothesized range biases for large foot-

print LiDAR systems (Roca-Pardifias et al. 2014). The anal-
ysis shows a temporal shift of the waveform peak for in-
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creasing angles of incidence. The analyzed phenomenon is
again related to the width (duration) of the emitted laser
pulse. A shorter pulse creates stronger artifacts at lower an-
gles of incidence. In all cases, the symmetry of the Gaussian
pulse model means that no range bias occurs. As the initial
waveform, emitted by the LiDAR system, is more accu-
rately described as an asymmetrical waveform or a heavy-
tailed curve, more appropriate waveform models than the
Gaussian model should be selected as input for the sim-
ulation (Chauve et al. 2007; Pfennigbauer et al. 2013).
The evaluation of the effects that arise from asymmetric
waveforms during measurements poses multiple challenges.
First, the fitting of the waveform, which can reduce the
asymmetry of the waveform and thus reduce the temporal
shift of the peak (Fig. 12). Secondly, the reference data
(comparison of the normal distance between two planes)
can only be obtained for flat targets, where the effect is
observed only orthogonally to the reference surface and
a large angle of incidence reduces the measured normal
distance (Fig. 11). Finally, there are few available wave-
form samples across the short echo pulses often deployed
by bathymetric LIDAR, posing a limitation to the waveform
resolution. Therefore, a clear quantification of the simulated
ranging offset would presumably be observed under labo-
ratory conditions (Castorena and Creusere 2015; Li et al.
2018, 2020; Mechelke et al. 2007). For example, the work
of (Mechelke et al. 2007) investigated such effects and pre-
sented insights on range accuracy related to the angle of
incidence and furthermore outlined that the color of the tar-
get also influences the measurement accuracy. Therefore,
future work should also address non Lambertian reflectors
to extend the simulation to incorporate such investigation.

7 Conclusion

The study presents a framework to simulate the interaction
of a laser pulse with an angled target. The simulation is used
to establish a relation between the angle of incidence and
echo pulse width, which allows to estimate neighborhood-
independent angles of incidence. Furthermore, the simula-
tion is used to analyze the effect of angled target on range
measurements.

7.1 Angle of Incidence Simulation

Through the simulation introduced, we were able to present
a new method of estimating angles of incidence based on
full-waveform data. We applied the new method to real-
world data and furthermore analyzed shifts of the maxi-
mum amplitude in relation to the incidence angle. Thus,
we introduced an approach for the calculation of the angle
of incidence that is independent of the local neighborhood.

@ Springer

For the analysis of potential ranging artifacts, we have em-
ployed different pulse models (Gaussian pulse and heavy-
tailed curve) and laser pulse parameters (beam divergence
and pulse duration) and shown possible offsets, which re-
main to be tested in a laboratory environment, in future
work.

The angle of incidence estimation has been shown to
work best for relatively short pulses (1.5ns) and broad laser
footprints (1 mrad), typically used for the green channel of
topo-bathymetric laser scanners.

7.2 Ranging Effects

In addition, numerical simulation for the analysis of range
effects related to the angle of incidence has shown a the-
oretical bias. This theorized bias is hard to quantify from
real-world data alone, and thus future work with high-accu-
racy references would be required. In general, laser pulses
with a higher degree of asymmetry suffer more than strictly
symmetric pulses, as is the case for a Gaussian pulse. Our
findings form a basis for future studies to improve the ac-
curacy of LiDAR data derived from full-waveform analysis
in real-world scenarios.

7.3 Summary

In conclusion, our work offers a novel approach for ex-
tracting angles of incidence from full-waveform LiDAR
data. Together with the new insights from the improved
simulation framework, this builds a general foundation to
advance the understanding of laser pulse interaction with
inclined targets and therefore provides a robust foundation
for future work.
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