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ABSTRACT

Bathymetric LiIDAR captures river topography efficiently for clear and shallow water, but for mountain rivers, whitewater rapids

still pose challenges. This study proposes a novel method to enable the extraction of bottom returns specifically in turbulent

whitewater sections. The method outlined uses a curve fitting approach to subtract the water column from the recorded LiDAR

waveform, calculates a residual of reflected energy that is not attributed to the water column, and applies peak detection on the

residual to extract previously undetected returns. For the evaluation of the points derived from the additional returns, three

different rivers were surveyed with both LiDAR measurements and a total station with a reflector pole. This provides the foun-

dation for assessing the accuracy of the new underwater terrain points. Compared to the reference data, this results in a median

reduction in the distance to the reference points from 20.6 to 9.2cm and 40.4 to 22.5cm. Because it closes significant gaps in

the data where no bottom points were detected. In conclusion, this study extends the application of full-waveform processing

for bathymetric LIDAR to whitewater rivers, which opens up the field of bathymetric LiIDAR for river research in the turbulent

environment of mountain rivers.

1 | Introduction

River bathymetry forms the basis for hydrodynamic numeri-
cal modeling, morphodynamic change detection, flood hazard
mapping, examination of sediment transport processes, and for
ecohydraulic topics such as habitat modeling or river restoration
(Faro et al. 2023; Mandlburger et al. 2009; Wohl et al. 2015).
Thus, the field of riverbed surveying has experienced significant
advances in recent decades, particularly through the introduc-
tion of remote sensing techniques, which have greatly improved
the data quality in terms of spatial coverage and point density
(Kinzel et al. 2012; Mandlburger et al. 2023; Pfennigbauer
et al. 2011; Piégay et al. 2019).

© 2025 John Wiley & Sons Ltd.

Today, there are many different approaches to capture river ba-
thymetry, including in situ surveys and different remote sens-
ing measurements (Bio et al. 2020; Kim and Ryou 2020; Lee
et al. 2022; Mandlburger et al. 2023; Pan, Glennie, Legleiter, and
Overstreet 2015; Piégay et al. 2019; Tomsett and Leyland 2019).
Depending on the scale of the surveyed area, remote sens-
ing techniques range from satellite-based imagery to sonar,
airborne photogrammetry, and light detection and ranging
(LiDAR) measurements, deployed from planes, helicopters,
unmanned aerial vehicles (UAVs) or unmanned surface vehi-
cles (USVs) (Lee et al. 2022; Kim and Ryou 2020; Mandlburger
et al. 2023; Moramarco et al. 2019; Tomsett and Leyland 2019).
Satellite-based imagery can only provide low spatial resolution
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(minimum 30cm pixels), suitable for larger bodies of water
(Hartmann et al. 2021). Therefore, in smaller rivers common
methods employed are SONAR and (topo-)bathymetric LIDAR
(Lague and Feldmann 2020; Mandlburger et al. 2023; Sundt
et al. 2021).

However, not all remote sensing methods can be applied to all
types of rivers (Tomsett and Leyland 2019). One of the types is
mountain rivers. Mountain rivers typically have rough river beds
with a large variability in grain sizes up to immobile boulders,
which, depending on the slope, can form step-pool sequences
(Buffington and Montgomery 2021). Together with the shallow
flow depth, the morphological structures lead to an abrupt tran-
sition in flow regimes from super- to subcritical flows, resulting
in energy-dissipating hydraulic jumps visible as whitewater rap-
ids (Pagliara et al. 2008; Magirl et al. 2009).

Whitewater rapids make mountain rivers ecologically valuable
habitats (Papadaki et al. 2016; Wheaton et al. 2009). However,
they are a limiting factor for most surveying techniques (Magirl
et al. 2009; McMahon 1981). For terrestrial survey methods,
which require wading into the water with a measurement device,
such as a prism pole tracked by a total station or measurements
with global navigation satellite systems (GNSSs), whitewater
rapids are dangerous river sections, making them either im-
possible to enter or very difficult to measure accurately (Strom
et al. 2017). While the risk of drowning and injury poses major
obstacles to surveys, a secondary minor challenge towards high
accuracy measurement is the force of the water acting upon the
reflector pole, as this introduces uncertainty in the position of
the measured points.

Mountain rivers, with their shallow flow depth, are generally
not suitable for boat or USV-based SONAR (Jawak et al. 2015;
Kim and Ryou 2020), and more generally, such rough shallow
waters tend to produce noisy SONAR data due to the higher
beam angle (Kastdalen et al. 2024).

Considering the often difficult accessibility of mountain rivers
and the presence of large boulders that hinder water surface
surveys, methods are gradually changing to aerial or UAV-
based remote sensing (Li et al. 2022). Although UAV-based
images deliver high-resolution data of dry river banks, the
resulting point clouds of turbulent water surfaces are highly
variable and cannot deliver bathymetry data for sections of
air-water mixture in whitewater rapids (Dufficy et al. 2024).
Such challenges further extend to common photogrammetric
approaches (Dietrich 2016; Woodget et al. 2017), as feature
matching is limited primarily to water surface points. Thus,
airborne or UAV-borne topo-bathymetric LIDAR has become
a common method used in gravel-bed rivers (Dey et al. 2019;
Lague and Feldmann 2020; Mandlburger et al. 2015), but has
hardly been applied to rivers with mountain river character-
istics (Ferguson et al. 2024; Tonina et al. 2020; Wiener and
Pasternack 2022). Whitewater limitations with regard to topo-
bathymetric LIDAR have been acknowledged in the literature
(Lague and Feldmann 2020; Kastdalen et al. 2024), but topo-
bathymetric LIDAR has mainly been applied in water bodies
with moderate complexity of the river morphologies and for
water depths well above 20cm (Frizzle et al. 2024; Kinzel
et al. 2021).

In the last decade, advances in LiDAR software and hardware
have improved the quality and resolution of underwater data
(Chauve et al. 2007; Mandlburger et al. 2023; Pfennigbauer
et al. 2011). The introduction of full-waveform LiDAR sys-
tems, which are capable of recording the full temporal
record of the reflected laser pulse, has enabled the develop-
ment of specialized signal processing methods (Ullrich and
Reichert 2005; Mader et al. 2021; Pfennigbauer et al. 2011;
Schwarz et al. 2019). Here, the relative difference to online sig-
nal processing applications is that instead of immediately ana-
lyzing received signals for echo pulse detection (Pfennigbauer
et al. 2009), the entire shape of the reflected echo of each laser
pulse is stored (Ullrich and Reichert 2005). This allows for
the extraction of more information from the LiDAR signal
than just the peak. Two commonly cited methods are peak
detection-based algorithms (Chauve et al. 2007; Mallet and
Bretar 2009; Pfennigbauer et al. 2009, 2022) and the surface-
volume-bottom (SVB) algorithm (Schwarz et al. 2019; Schwarz
and Pfennigbauer 2024). The latter uses a physical model of
the interaction between the laser pulse and the water column
to improve point detection. Furthermore, specialized tools
that exceed the processing of a single waveform have been
shown to improve bottom echo detection, namely waveform
averaging (Pan, Glennie, Hartzell, et al. 2015; Pfennigbauer
et al. 2011; Mader et al. 2021). Through the combination of
multiple waveforms of close spatial proximity into a single
waveform, the overall signal-to-noise ratio is increased, allow-
ing the detection of weaker echoes (Pfennigbauer et al. 2011;
Mader et al. 2021).

Current research on topo-bathymetric LiDAR for whitewa-
ter has focused mainly on air-water flows (Hall et al. 2012; Li
et al. 2019, 2022) or underlined the challenges in the whitewater
section (Awadallah et al. 2023; Skinner 2011). Among these chal-
lenges are the hazardous environment for personnel, fast and
shallow waters hindering SONAR measurements, and sparse
penetration of LiDAR through the whitewater (Awadallah
et al. 2023; Skinner 2011). However, previous studies have not
provided methodologies to improve full-waveform processing.
Therefore, this study aims to extend current LiDAR processing
methodologies to capture terrain points within whitewater rap-
ids. The goal is to improve automated terrain mapping of moun-
tain rivers and to increase the spatial coverage of bathymetry
data for mountain rivers.

In our study, we first introduce three river datasets (Section 2),
where we use a well-researched pre-alpine river in Lower
Austria as a reference dataset and two mountain rivers lo-
cated in the central Alps as test sites. Based only on the refer-
ence dataset, we present the fundamental techniques used for
the full-waveform LiDAR analysis (Section 3) and introduce
a minimal parameter curve fitting for the LiDAR interaction
with the water column (Section 3.1.2). This approximation of
the LiDAR waveform can then be used to extract additional
points from the whitewater waveforms by analyzing the dif-
ferences in energy between the recorded laser pulse (as a
full-waveform) and the theoretical return based on the curve
fitting (Section 3.2). Our method is applied to each waveform
that produces a water surface point. For each waveform, curve
fitting is applied and, if successful, the residual is calculated.
For these residuals, peak detection (Virtanen et al. 2020)
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extracts potential whitewater bottom returns, filtered by dis-
tance from the water surface (greater than 20cm), minimal
horizontal distance to the next peak of the waveform (approx-
imately 8 ns) and echo number (must be the second echo). The
newly extracted points are then evaluated against the mea-
sured reference data from river transects. In this way, we rig-
orously assess the method (Section 4) and thoroughly discuss
the results obtained (Section 5).

2 | Materials

The presented study consists of multiple areas (Pielach [Austria],
Fischbach [Austria], and Passer [Italy]) and different types of
data (full-waveform LiDAR and reference measurements). The
differences between the sites and the extent of the data are out-
lined in this section, providing the materials for the intended
analysis, as well as the required background.

2.1 | Surveyed Areas

The Pielach is a pre-alpine river that has retained natural self-
forming morphological characteristics and has a mean flow
rate of 6.5 m3/s with almost no whitewater (Mandlburger
et al. 2015; Panchan et al. 2022). In contrast to the Pielach
River, both the Passer and Fischbach River can be character-
ized as mountain rivers with steep slopes of 2% and 8% incli-
nation, respectively, broad grain size distributions including
large immobile boulders, and numerous whitewater sections.
The Passer River has a plane-bed morphology and a mean dis-
charge of about 11.5 m? /s. The Fischbach River has a step-pool
morphology with a average discharge of about 3.5 m? /s. These
differences can be seen both in the general area around the sur-
veyed sites and in the orthophotos of the representative sections
shown in Figure 1. The Pielach River is later used as a reference
dataset for the waveform fitting, as it is a standard measure-
ment environment with an extensive reference measurement
coverage (Mandlburger et al. 2025). This allows us to establish
our methodology first on a lower-slope gravel-bed river section
and then apply the gained insights to whitewater rapids and ex-
tend the scope of what is currently considered viable for LIDAR
bathymetry.

2.2 | Datasets

Each site was surveyed with a bathymetric laser scanner
mounted on a UAV platform. In all cases, the system used was
a RIEGL VQ-840-GL topo-bathymetric laser scanner with a
wavelength of 532nm and full-waveform recording. In more
detail, the average laser footprint on the ground ranged from
around 6 cm for the Pielach study site to approximately 20 cm for
the mountain rivers according to the selected scanner settings
(Table 1). The difference in flight altitudes between the Pielach
study site and the mountain rivers is mainly driven by external
circumstances. The region of Lower Austria experienced a major
flood event in September 2024 (Bloschl 2024; Rhomberg-Kauert
et al. 2025). Therefore, this site was mapped at a higher detail
and with a different focus in mind during data acquisition, and
here only serves as a reference dataset.

For each laser scan, the data was processed using the SVB algo-
rithm and exported as a point cloud in a georeferenced coordi-
nate system (ETRS89, UTM33N; EPSG: 25833) for the Pielach
River or a local project coordinate system (PCS) for the moun-
tain rivers.

The reference data for the three river datasets consists of
in situ measurements recorded by a two-person team using
a total station and a reflector pole. For all three study sites,
the registration between the LiDAR point cloud and reference
measurements was achieved using alignment reference ob-
jects (e.g., planes).

For each site, a representative cross section is shown in
Figure 2A,C,E corresponding to the orthophotos of Figure 1, to-
gether with a selection of the waveforms recorded in the center
region of the cross section (Figure 2A,D,F).

2.3 | Data Preprocessing

LiDAR data tend to be noisy, especially for bathymetric LiDAR,
as the water column backscattering introduces a high amount of
noise due to multipath effects and unwanted echoes reflected by
suspended sediment. Thus, the outlier removal selected for data
cleaning in this study is a clustering approach, using density-
based clustering (DBSCAN) with an epsilon parameter of 0.3
(Ester et al. 1996; Schubert et al. 2017; Pedregosa et al. 2011),
similar to previous studies (Rhomberg-Kauert, Dammert,
et al. 2024).

3 | Methods

To extend current full-waveform LiDAR processing toward
the application in whitewater rapids (Figure 3), we first build
a theoretical framework of the LiDAR interaction with the
water column by convoluting a Gaussian pulse with an ex-
ponential decay function. This idealized bathymetric LIDAR
waveform can then be fitted to the averaged waveform to out-
line general trends for the laser-water interaction in white-
water rapids (Figure 3—analysis of combined waveforms).
Second, we apply the theoretical model to the individual
whitewater waveforms using curve fitting and perform an
analysis of the difference between the idealized laser-water
interaction and the recorded waveform (Figure 3—analysis
of individual waveforms) from which the new points can be
extracted.

3.1 | Analysis of Combined Waveforms

To analyze the different waveforms at all three study sites, we
introduce two main tools: First, waveform averaging, which
combines multiple waveforms into a single generalized one.
Second, the curve fitting of a water column backscattering func-
tion. Waveform averaging is used to outline the general char-
acteristics of similar laser pulses with close spatial proximity.
The curve fitting represents an idealized interaction of the laser
pulse with the water column, based on the water column back-
scattering given by the convolution of a Gaussian pulse with an
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FIGURE1 | Overview of the study sites (red area), orthophotos of three representative regions of each site (BEV 2024) and digital terrain model
(20cm resolution) overlaid on the orthophoto. (A) Pielach River (48.2153° N, 15.3732° E) in Lower Austria (Austria), (B) Passer River (46.7264° N,
11.2010° E) in South Tyrol (Italy), and (C) Fischbach River (47.0728° N, 11.0070° E) in Tyrol (Austria). [Color figure can be viewed at wileyonlineli-
brary.com]

exponential decay function. In our study, waveform averaging
is used to identify the general waveform behavior (Section 4.1)
while curve fitting is used for the whitewater point extraction
(Section 4.2).

3.1.1 | Waveform Averaging

The underlying idea of waveform averaging is to combine
multiple waveforms into a single waveform. However, under
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TABLE1 | Different settings and parameters of the LiDAR systems used in the surveys.
Location Sensor Flight altitude Beam divergence
Pielach RIEGL VQ-840-GL 60+5m 1mrad
Passer RIEGL VQ-840-GL 106+10m 2mrad
Fischbach RIEGL VQ-840-GL 102+14m 2mrad
A B
262 -15 40001
[ Reference measurements
2611 a i
z 5 % 2 3000
= [s] =]
Eo00] 7T eI, TR TR Y § % 20001
2 . - v 258
= 259 1 : 2 D E 1000
o
258 1— ; ; ; ; ; ; ; -30 01
0 2 4 6 8 10 12 14
Distance [m]
C
-15
504 : [ Reference measurements 3000
@
— 503 202 o
£ g 5 20001
£ 502- s 5
‘© [%)
£ 5014 258 £ 1000-
2
500
: . . : : . : : -30 0l : . : : :
97.5 100.0 102.5 105.0 107.5 110.0 12,5 115.0 0 2 4 6 8 10 12
Easting (PCS) [m] Time [ns]
F
1559 -15
[ Reference measurements
B = Q 1000 A
£ 1558 - ” -20° )
= ar g 2
5 - 2 E
£ 1557 - 258 £ 500
Q
14
1556 ~— T . ; . T r -30 01— T r T T r
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Distance [m] Time [ns]
FIGURE 2 | Cross sections of the three sections for each study, together with the recorded full-waveform data of the LiDAR system. The wave-

forms are extracted in the center of each cross section and set to start at zero. [Color figure can be viewed at wileyonlinelibrary.com]

real-world conditions, waveforms tend to display variations even
in similar settings. Therefore, the waveforms have to first be ef-
ficiently combined. The first step is to select an area of similar
terrain or waveforms of approximately equal shape. For exam-
ple, a similar distance between the water surface and bottom,
with a flat water surface and even terrain, as is the case for parts
of the Pielach dataset. In the mountain rivers, a similar selec-
tion is achieved by combining waveforms of similar maximum
amplitude.

As the LiDAR system is not stationary, the distance from
the scanner to the water surface varies. Because the se-
lected waveforms have the same distance within the water,
they can effectively be aligned by setting the starting time of
the recorded waveform (the laser pulse hitting the water) to
zero. Since all waveforms have the same start and are sim-
ilar in shape, we get a distribution of waveforms that looks
similar to the scatterplot in Figure 4. Each combined time

time stamp (Figure 4). To extract the final, averaged wave-
form, the last step in the waveform averaging workflow is the
interpolation between the averaged amplitudes to obtain a
smooth curve.

3.1.2 | Curve Fitting

The function used for the laser-water interaction is based
on the basic theoretical LIDAR model (Chauve et al. 2007;
Schwarz et al. 2017), assuming that the laser pulse is of
Gaussian shape and the interaction with the water column
introduces an exponential decay component. This is trans-
formed into an empirical model, where we use minimal pa-
rameter (Table 2) curve fitting to approximate the reflected
echo. For this, we first establish the standard Gaussian pulse
as follows:

2
stamp has a variety of amplitudes corresponding to the input f(t,a, pyo)=a- exp< D > )
waveforms, and an average value can be calculated for each 202
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FIGURE 3 | Flowchart outlining the general waveform behavior (analysis of combined waveforms) and the single waveform whitewater point

extraction (analysis of individual waveforms) outlined in the methods section. The main difference between the two workflows is that the analysis

of combined waveforms uses multiple waveforms as input, while the analysis of individual waveforms is based on each recorded waveform. [Color

figure can be viewed at wileyonlinelibrary.com]

Amplitude
¢
4

Time

FIGURE 4 | Illustration of the waveform averaging. A scatterplot of
the recorded samples (gray) with the mean value in black and the interpo-
lated curve in yellow. The averaged waveform here would correspond to
the yellow curve. [Color figure can be viewed at wileyonlinelibrary.com]

and the exponential decay function as follows:
r(t, ) = exp( = ft). @

The numerical convolution of these two functions can then be
used as a base function for the curve fitting based on the LIDAR
waveform. This convolution is given by

pt(avﬂyaﬁﬁ) = (f * 7)(t’a9/4’55ﬁ)

t
(©)
=/f(§,a,/4,0')‘)/(t—€,ﬁ) dg
0

Using nonlinear least squares, this generalized function can
now be fitted (Virtanen et al. 2020) to the averaged waveforms
to analyze the general behavior of the water column backscat-
ter and the individual waveform in the extraction of whitewater
points.
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3.2 | Analysis of Individual Waveforms

In order to extract bottom returns in the turbulent water of
whitewater rapids, we need to differentiate the waveform into
the water column backscattering and possible echoes fused
within (Figure 5). Initially, recorded waveforms consist of dis-
crete sample intervals approximately every 0.5ns, and therefore
the first step in the whitewater workflow is to interpolate this
waveform to a continuous curve. Next, the convolution shown
in Equation (3) is fitted to each recorded waveform. In this
instance, we did not need to separate the first and secondary
echoes, as the whitewater waveforms do not feature the classical
second echoes. To compare the interpolated waveform and the
fitted curve point-wise, the temporal resolution for both func-
tions is set to a factor of 16 times the recorded sampling rate,

TABLE 2 | Table outlining the different variables for the curve
fitting towards the laser-water column-interaction.

Variable Reference

f Gaussian pulse

y Exponential decay function

D; LiDAR-water column-convolution

t Time (ns)

a Amplitude (ADC)

u Temporal position Gaussian pulse (ns)

c Width Gaussian pulse (ns)

p Backscattering coefficient (—)
Convolution variable

>

Amplitude

Amplitude

FIGURES5 | Illustration of two waveforms observed in the whitewa-
ter section. High amplitude waveform in blue (A) and low amplitude
waveform in orange (B) and the simulated waveform in black. The
striped area denotes the difference, which is shown in the lower plots.
The difference in panel B displays the potential bottom return extracted
from the difference (marked maximum). [Color figure can be viewed at
wileyonlinelibrary.com]

as this matches the numerical convolution output (Virtanen
et al. 2020) and thus later downsampling can be avoided.

This results in two cases: (i) no fitting is possible (optimal param-
eters cannot be computed within 250 iterations), which means no
further analysis can be done, and no new points are assigned. In
the second case (ii), an idealized function representing the water
column backscattering can be fitted to the interpolated waveform.
‘We subtract the fitted convolution from the interpolated waveform
for each sample and thus get a residual curve for the remaining
amplitude. The residual curve now represents the energy not at-
tributed to the water column, and therefore, we can use peak detec-
tion to extract potential new echoes. The temporal position of these
maxima, together with the recorded beam vector, corresponds to
the new terrain points extracted within the whitewater rapid.

We also introduce filter criteria for extracted peaks to improve
the signal-to-noise ratio in the data, as the whitewater waveform
tends to have deviating shapes from classical bathymetric LIDAR
waveforms. Initially, all new points must be later in time than the
recorded point of the analyzed waveform (the surface echo), and
the method is only applied to waveforms that do not have a second
echo (bottom echo). As the mountain rivers are not obstructed by
vegetation, this focus on single echoes implies that only water sur-
face echoes were recorded and therefore no distinction between
extracted echoes and bottom echoes has to be made.

Furthermore, depending on the depth of the water, a supervised
threshold is set to focus on the second peak of the residual curve
and a minimum distance from the surface of 20 cm is set to avoid
artifacts from the surface of the whitewater (Figure 3). Finally,
the points extracted in this manner are cleaned by density-based
clustering (Section 2.3) to remove additional false echoes not
directly linked to the terrain. This leaves our final set of new
points that correspond to the river bottom.

3.3 | Evaluation Methods

To provide an independent reference for the waveform fitting
outside the mountain rivers, we evaluate the waveform fitting on
a gravel-bed river (the Pielach River). Waveform averaging was
used to first create a general function, and secondly, the function
is fitted to each individual curve of the averaged waveform. For
each waveform, a deviation from the fitting can be calculated,
given by the median absolute deviation (MAD) in relation to the
maximum amplitude of the waveform.

4 | Results

The results are divided into two sections: the general trends of
the recorded waveforms for all three rivers examined with wave-
form averaging and the extraction of new points in the whitewa-
ter rapids, together with the comparison to the reference data.

4.1 | General Waveform Analysis

The first part of the results section focuses on the general be-
havior of the full-waveform data of a gravel bed river. Waveform
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averaging is used to evaluate the waveform fitting for typical
gravel bed rivers and shows that there are bottom echoes within
the recorded waveform for whitewater rapids.

4.1.1 | Water Column Function

Applying the waveform averaging to the Pielach dataset, we can
derive a generalized waveform for the cross section shown in
Figure 2. The center-to-right part of the cross section exhibits
similar water depths and smooth terrain, as the composition of
the ground consists of small gravel, sand, and mud. This, along
with the fairly smooth water surface of the river, presents nearly
ideal conditions for testing the waveform fitting.

The samples of the selected waveforms, together with the av-
eraged curve as described in Section 3.1.1, can be seen in
Figure 6A. The two distinct echoes are clearly visible, the first
echo displaying the water surface, followed by subsequent water
column backscattering, and the second echo being the bottom
return. We focus on the water surface and the subsequent water
column backscatter to evaluate the waveform fitting (Figure 6B).
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FIGURE 6 | (A) Waveform averaging for the center section of the
Pielach River (Figure 2A). (B) Averaged waveform (yellow) and the fit-
ted laser-water column-interaction for the first echo (black), the dashed
line is the separation between both echoes. (C) Histogram of the devi-
ation between the curve fitting and the first echo for each waveform in
the Pielach dataset, expressed as a percentage of the maximum ampli-
tude. [Color figure can be viewed at wileyonlinelibrary.com]

The black and yellow curves display an overall similar behavior
with some degree of variation after the peak. The results of the
individual waveform evaluation (Section 3.3) show an offset of
around 1% of the maximum amplitude for most curves, with al-
most all waveforms having less than 3% deviation (Figure 6C).

4.1.2 | Whitewater Waveforms

We empirically separate the waveforms into three categories on
the basis of the maximum detected amplitude. Waveforms with
an amplitude greater than 2000 ADC display small to no devi-
ation from the fitted curves (Figure 7A,B). For the amplitudes
between 1200 and 2000 ADC, the deviation from the waveform
fitting is still small (Figure 7D), but has some more visible devi-
ation after the peak (Figure 7C). Lastly, the waveforms with an
amplitude lower than 1200 ADC have a visible deviation after
the peak of the waveform, similar to a second echo engulfed in
the water column backscatter of the water surface (Figure 7E,F).

Based on these differences (dashed lines, Figure 7), the ex-
traction of the new points outlined in Section 3.2 becomes
evident. Especially in Panels E and F of Figure 7, the residual
exhibits a small secondary echo that can be used for peak detec-
tion to provide additional points within the whitewater rapids.

4.2 | Single Waveform Whitewater Point
Extraction

The second part of the results section focuses on the whitewater
point extraction based on individual waveforms. We compare
the newly derived whitewater bottom points with the reference
measurements for both mountain rivers with a focus on the im-
provements in accuracy and point density.

4.2.1 | Whitewater Bottom Points

The results of the whitewater bottom point extraction (Section 3.2)
can be seen in Figure 8, where the four panels show the introduced
cross sections (Section 2) before and after the method is applied.

In both sections, the turbulent whitewater results in few or
no bottom returns even with advanced processing such as
SVB, which is directly visible when comparing the river cross
section for both the Passer and Fischbach River with the ac-
quired reference data for each cross section (Figure 8A,C).
After applying the introduced workflow, both sections show
an increase in bottom returns (Figure 8B,D), which match
the acquired reference data to some extent. Furthermore,
Figure 8B,D shows the difference between the new points and
the outliers removed by the last clustering step of the method.
In both cross sections, the points classified as outliers are to-
wards the waterline of the whitewater section, as there the
density of the new points decreases. Thus, the clustering-
based outlier removal helps avoid false echoes in the transi-
tion area of the land-water boundary.

In contrast to the standard processing, the newly added
points display a high degree of noise, which can be seen in the
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FIGURE7 | Waveform averaging plots for different amplitude ranges for the Passer and Fischbach River. (A and B) Waveform averaging for wave-
forms with a maximum amplitude greater 2000 ADC. (C and D) Waveform averaging for waveforms with a maximum amplitude between 1200 and

2000ADC. (E and F) Waveform averaging for waveforms with a maximum amplitude less then 1200 ADC. [Color figure can be viewed at wileyon-
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varying vertical positions of the added data. Therefore, fur-
ther quantitative analysis is required to assess the accuracy
of the extracted points in relation to the collected reference
measurements.

4.2.2 | Comparison to Reference Data

To evaluate the new points, we compare the measured reference
data with the nearest neighbor in the point cloud and calculate
the vertical difference between the two points. This is done for
point-wise distances of up to 1m to exclude reference data ac-
quired outside the river.

For the Pielach River control dataset, this leads to a minimum
absolute deviation of 0.2cm and a maximum absolute deviation
of 6.2cm for the selected cross section (Table 3). For the Pielach
River, a rigorous registration of the point cloud on the refer-
ence measurements was performed using reference planes. For
the mountain rivers, the poor GNSS signal quality, due to the
mountainous environment, in combination with a less precise
registration approach, leads to higher registration errors. This
leaves the Pielach dataset with subcentimeter accuracy and the
mountain river dataset with mean point accuracies between 9.2
and 22.5cm (Table 3).

For the two mountain rivers, the vertical distances to the ref-
erence data for the cross sections can be seen in Table 3, before

and after the new points were added. For both mountain riv-
ers, there is a notable decrease in the vertical distances to the
reference data after the application of the new method. For the
Passer river, the mean and median accuracies improve by 11.4
and 4.9 cm. Similarly, for the Fischbach River, the accuracies im-
prove by 17.9 and 14.2cm.

For each river, multiple transects were acquired (Figure 9A,C),
and the vertical distances can be calculated before and after
the applied method. The results can be seen in Figure 9B,D.
Furthermore, the results are given as numerical values of the
mean and median distance in Table 3. There, a mean and me-
dian shift improvement of more than 15cm can be seen, show-
ing an overall accuracy improvement in the data (Table 3) and,
together with the results of Figure 8, highlighting the successful
capture of bottom echoes in whitewater rapids.

In addition to the improvement in accuracy, the whitewater
bottom points increase the overall point density by 12% for
the Passer River and 27% for the Fischbach River, before the
clustering-based filtering. The increase in density is calculated
based on the initial points of the point cloud, limited to the man-
ually annotated underwater terrain. For the underwater terrain,
the points per square meter thus increased by 24 points / m? for
the Passer River and 33 points / m? for the Fischbach River.

The lower increase in point density compared to the signifi-
cant improvement in the mean and median distance from the
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FIGURE 8 | Cross section plots of the (A, B) Passer and (C, D) Fischbach River (Figure 2) before and after the whitewater point extraction. Each
plot displays, in addition to the LiIDAR data, the measured reference data (gray boxes). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 | Table displaying the mean and median absolute vertical distances for each cross section and the total surveyed area (Figures 8 and 9).

Mean distance

Median distance

Location before before Mean distance after Median distance after
Pielach cross section 3.8cm 4.3cm — —

Passer cross section 41.7cm 39.0cm 13.2cm 11.0cm
Fischbach cross section 36.8cm 39.5cm 10.0cm 7.8cm

Passer 20.6cm 12.3cm 9.2cm 7.4cm
Fischbach 40.4cm 37.7cm 22.5cm 13.5cm

reference data is caused by the data gaps (Figure 1). In the
whitewater rapids, standard processing resulted in a limited
number of bottom points; thus, the nearest neighbor within

the defined search radius is often further away than the ac-
tual bottom. In the less turbulent sections, consistent bot-
tom echoes could be extracted without the whitewater point
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extraction method (Figure 8). Therefore, the new whitewater
points produced a substantial decrease in the distance to the
reference points.

5 | Discussion

Our study shows that we were able to capture bottom echoes in
whitewater sections of rivers with our method. However, con-
cerns remain regarding the high degree of noise and overall de-
viation from the acquired reference data compared to standard
bathymetric LIDAR accuracies. Therefore, the following section
aims to evaluate the challenges in collecting reference data, out-
line possible improvements for future work, and critically dis-
cuss the results presented.

5.1 | Reference Data Acquisition

The difficult environment of mountain rivers imposes various
obstacles on the acquisition of high-precision reference data.
These include the higher uncertainty of GNSS measurements
in mountainous environments and the fluctuating accuracy of
the reference measurements due to the high flow velocities act-
ing on the surveyor and the uneven terrain of the rivers, where
varying boulder sizes lead to large vertical fluctuation during
the transect measurements.

The first source of discrepancies is the georeferencing. The
typical approach is to use GNSS measurements to trans-
form the local PCS in a global coordinate system (GCS) to

align both LiDAR and reference measurements within the
same coordinate system (Nesbit et al. 2022; Mohamed and
Wilkinson 2009). In normal measurement environments,
this is done by ground control points, measured with GNSS
(Mohamed and Wilkinson 2009; Stott et al. 2020), but in
mountainous environments, the satellite signal obstruction
from the surrounding topography leads to less accurately
measured ground control points. In the case of the Fischbach
dataset, the georeferencing using ground control points was
insufficient. Thus, we improved the georeferencing by using
fixed features in the area (e.g., roads, tunnels, etc.) to account
for differences between the PCS and the GCS for the selected
ground control points. For these points, we see a vertical stan-
dard deviation of 2.4cm, which is part of the potential devi-
ation in the evaluation. As for the Passer River, the data was
referenced to a preexisting height control point, since the total
station measurements and LiDAR data displayed discrepan-
cies of up to 10cm before aligning the dataset.

Second, the reference measurement itself poses a challenge on
its own, as the flow velocity in whitewater rapids is significantly
higher and can, depending on the river morphology, reach val-
ues above 3m/s (Magirl et al. 2009). Not only does the surveyor
have to maintain a stable position in a highly turbulent flow and
uneven terrain, but also has to keep the measurement pole with
the mounted reflector as steady as possible to avoid inaccuracies
in the measurement itself. This, in combination with the hetero-
geneous terrain, where small changes to the measured position
constitute larger changes in the depth due to the rough nature
of the river bed, leads to additional uncertainties in the refer-
ence data.
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Finally, for the mountain river datasets, there is a chance of
changes in the river topography, since the initial LiDAR mea-
surements were conducted in March and April 2024, while
the references were measured in December 2024 and January
2025. According to the gauge data available on each moun-
tain river, both river sections experienced a flood event with
a one-year return interval. However, the reference data at the
whitewater rapid locations was predominantly taken from
large immobile rock boulders. However, this could be over-
come in future work with better planning during the low-flow
season, allowing both types of measurements to be done at the
same time.

The effect of these influences on the measurement can be seen
in relation to the Pielach dataset, where a standard case for
river bathymetry is displayed. The measurement accuracy to
the reference was between 0.2 and 6.2cm, where the mean
deviation was 3.8cm with a standard deviation of 1.6cm.
Furthermore, in the Pielach River dataset, the accuracy was
additionally improved through saddle roof references, which
allowed for a more accurate referencing of the LiDAR data to
the reference data (Mandlburger et al. 2025). Therefore, the
lower precision of the new points calculated in the mountain
river environment does not necessarily reflect poor results
but is strongly influenced by the challenging environment of
mountain rivers for reference data collection. Therefore, for
a more detailed evaluation, further reference would be re-
quired with a more extensive measurement, ideally in a more
controlled environment such as fish steps near dams or in a
laboratory.

5.2 | Waveform Processing

Another aspect with respect to the quality of the calculated
whitewater points is the method used for the simulation of the
laser-water column interaction and the echo extraction. For the
water column backscattering simulation, different functions can
be used for the initial laser pulse, such as a heavy-tailed curve
(Rhomberg-Kauert, Poppl, et al. 2024; Shen et al. 2017) or a more
system-tailored function (Schwarz et al. 2017; Yang et al. 2023).
These could more accurately represent the water column back-
scattering, leading to an improved residual. However, we de-
cided on our minimalistic waveform fitting approach to avoid
overfitting.

Similarly, for the echo extraction from the residual signal, we
use standard peak detection, which does not necessarily corre-
spond to the exact temporal position of the target. The method
could be improved through different curve fitting techniques
or power thresholds to better estimate the temporal position
(Chauve et al. 2007; Schwarz et al. 2019).

5.3 | Relevance for River Applications

Topo-bathymetric LiDAR applications for whitewater riv-
ers were previously considered difficult or even impossible
(Awadallah et al. 2023; Kastdalen et al. 2024; Lague and
Feldmann 2020). Topo-bathymetric LiDAR did not appear to
be able to provide continuous spatial data on the topography of

the riverbed, which meant that data gaps had to be ignored or
filled using other techniques (Wiener and Pasternack 2022).
In particular, the bathymetry of mountain rivers, with their
highly variable riverbed structure, has a decisive influ-
ence on the flow process and thus on sediment transport.
Consequently, a high spatial resolution is necessary to model
the riverbed appropriately. If data gaps cannot be closed by ad-
ditional survey measurements (e.g., GNSS or total station), as
is the case with inaccessible turbulent whitewater sections in
mountain rivers (Strom et al. 2017), data interpolation reduces
the reliability of the results of hydro- and morphodynamic as
well as ecological river basin studies (Faro et al. 2023; Kinzel
et al. 2012). With the outlined processing method, data gaps
can be reduced and the entire field of topo-bathymetric LIDAR
applications could be extended to more complex river applica-
tions (Ferguson et al. 2024). However, the outlined improve-
ments remain to be tested in future research, but the method
highlights the potential of applying topo-bathymetric LIDAR
to whitewater rivers. Thus, it is shown that this topic holds
great value for further experiments and surveys on the accu-
racy and potential of bathymetric LIDAR in mountain river
environments.

6 | Conclusion

The study of whitewater rivers, in particular with remote-
sensing data, has long been regarded as challenging. With the
application of recent advances in bathymetric full-waveform
LiDAR and on the basis of our datasets, we present a case
study for mapping such environments, at least to a degree of
uncertainty. Through the introduction of waveform averag-
ing for both gravel-bed and mountain rivers, we have shown
that the curve fitting approach reflects an idealized laser-
water interaction, and there are echoes within the whitewa-
ter waveforms not detected by standard LiDAR waveform
processing. Furthermore, single-waveform-based whitewater
point extraction is able to detect bottom returns within the
rapids through the subtraction of an idealized water column
backscattering, leading to a residual, where peak detection
can extract additional echoes. These points have shown a
mean vertical distance of 7.8 cm to 9.5cm to the acquired ref-
erence data, while the initial point clouds without the white-
water bottom points showed a mean deviation of over 35cm.
However, the reference measurements and georeferencing are
not without challenges, and future research should implement
a more rigorous georeferencing framework. In conclusion, our
method successfully improves terrain detection in whitewa-
ter sections and overcomes a major challenge in mountain
river surveying, thus improving the general topo-bathymetric
LiDAR signal processing and opening up new possibilities for
hydraulic research and modeling.
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