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ABSTRACT
Bathymetric LiDAR captures river topography efficiently for clear and shallow water, but for mountain rivers, whitewater rapids 
still pose challenges. This study proposes a novel method to enable the extraction of bottom returns specifically in turbulent 
whitewater sections. The method outlined uses a curve fitting approach to subtract the water column from the recorded LiDAR 
waveform, calculates a residual of reflected energy that is not attributed to the water column, and applies peak detection on the 
residual to extract previously undetected returns. For the evaluation of the points derived from the additional returns, three 
different rivers were surveyed with both LiDAR measurements and a total station with a reflector pole. This provides the foun-
dation for assessing the accuracy of the new underwater terrain points. Compared to the reference data, this results in a median 
reduction in the distance to the reference points from 20.6 to 9.2 cm and 40.4 to 22.5 cm. Because it closes significant gaps in 
the data where no bottom points were detected. In conclusion, this study extends the application of full-waveform processing 
for bathymetric LiDAR to whitewater rivers, which opens up the field of bathymetric LiDAR for river research in the turbulent 
environment of mountain rivers.

1   |   Introduction

River bathymetry forms the basis for hydrodynamic numeri-
cal modeling, morphodynamic change detection, flood hazard 
mapping, examination of sediment transport processes, and for 
ecohydraulic topics such as habitat modeling or river restoration 
(Farò et  al.  2023; Mandlburger et  al.  2009; Wohl et  al.  2015). 
Thus, the field of riverbed surveying has experienced significant 
advances in recent decades, particularly through the introduc-
tion of remote sensing techniques, which have greatly improved 
the data quality in terms of spatial coverage and point density 
(Kinzel et  al.  2012; Mandlburger et  al.  2023; Pfennigbauer 
et al. 2011; Piégay et al. 2019).

Today, there are many different approaches to capture river ba-
thymetry, including in situ surveys and different remote sens-
ing measurements (Bio et  al.  2020; Kim and Ryou  2020; Lee 
et al. 2022; Mandlburger et al. 2023; Pan, Glennie, Legleiter, and 
Overstreet 2015; Piégay et al. 2019; Tomsett and Leyland 2019). 
Depending on the scale of the surveyed area, remote sens-
ing techniques range from satellite-based imagery to sonar, 
airborne photogrammetry, and light detection and ranging 
(LiDAR) measurements, deployed from planes, helicopters, 
unmanned aerial vehicles (UAVs) or unmanned surface vehi-
cles (USVs) (Lee et al. 2022; Kim and Ryou 2020; Mandlburger 
et al. 2023; Moramarco et al. 2019; Tomsett and Leyland 2019). 
Satellite-based imagery can only provide low spatial resolution 
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(minimum 30 cm pixels), suitable for larger bodies of water 
(Hartmann et  al.  2021). Therefore, in smaller rivers common 
methods employed are SONAR and (topo-)bathymetric LiDAR 
(Lague and Feldmann  2020; Mandlburger et  al.  2023; Sundt 
et al. 2021).

However, not all remote sensing methods can be applied to all 
types of rivers (Tomsett and Leyland 2019). One of the types is 
mountain rivers. Mountain rivers typically have rough river beds 
with a large variability in grain sizes up to immobile boulders, 
which, depending on the slope, can form step-pool sequences 
(Buffington and Montgomery 2021). Together with the shallow 
flow depth, the morphological structures lead to an abrupt tran-
sition in flow regimes from super- to subcritical flows, resulting 
in energy-dissipating hydraulic jumps visible as whitewater rap-
ids (Pagliara et al. 2008; Magirl et al. 2009).

Whitewater rapids make mountain rivers ecologically valuable 
habitats (Papadaki et al. 2016; Wheaton et al. 2009). However, 
they are a limiting factor for most surveying techniques (Magirl 
et  al.  2009; McMahon  1981). For terrestrial survey methods, 
which require wading into the water with a measurement device, 
such as a prism pole tracked by a total station or measurements 
with global navigation satellite systems (GNSSs), whitewater 
rapids are dangerous river sections, making them either im-
possible to enter or very difficult to measure accurately (Strom 
et al. 2017). While the risk of drowning and injury poses major 
obstacles to surveys, a secondary minor challenge towards high 
accuracy measurement is the force of the water acting upon the 
reflector pole, as this introduces uncertainty in the position of 
the measured points.

Mountain rivers, with their shallow flow depth, are generally 
not suitable for boat or USV-based SONAR (Jawak et al. 2015; 
Kim and Ryou 2020), and more generally, such rough shallow 
waters tend to produce noisy SONAR data due to the higher 
beam angle (Kastdalen et al. 2024).

Considering the often difficult accessibility of mountain rivers 
and the presence of large boulders that hinder water surface 
surveys, methods are gradually changing to aerial or UAV-
based remote sensing (Li et  al.  2022). Although UAV-based 
images deliver high-resolution data of dry river banks, the 
resulting point clouds of turbulent water surfaces are highly 
variable and cannot deliver bathymetry data for sections of 
air-water mixture in whitewater rapids (Dufficy et al. 2024). 
Such challenges further extend to common photogrammetric 
approaches (Dietrich  2016; Woodget et  al.  2017), as feature 
matching is limited primarily to water surface points. Thus, 
airborne or UAV-borne topo-bathymetric LiDAR has become 
a common method used in gravel-bed rivers (Dey et al. 2019; 
Lague and Feldmann 2020; Mandlburger et al. 2015), but has 
hardly been applied to rivers with mountain river character-
istics (Ferguson et  al.  2024; Tonina et  al.  2020; Wiener and 
Pasternack 2022). Whitewater limitations with regard to topo-
bathymetric LiDAR have been acknowledged in the literature 
(Lague and Feldmann 2020; Kastdalen et al. 2024), but topo-
bathymetric LiDAR has mainly been applied in water bodies 
with moderate complexity of the river morphologies and for 
water depths well above 20 cm (Frizzle et  al.  2024; Kinzel 
et al. 2021).

In the last decade, advances in LiDAR software and hardware 
have improved the quality and resolution of underwater data 
(Chauve et  al.  2007; Mandlburger et  al.  2023; Pfennigbauer 
et  al.  2011). The introduction of full-waveform LiDAR sys-
tems, which are capable of recording the full temporal 
record of the reflected laser pulse, has enabled the develop-
ment of specialized signal processing methods (Ullrich and 
Reichert  2005; Mader et  al.  2021; Pfennigbauer et  al.  2011; 
Schwarz et al. 2019). Here, the relative difference to online sig-
nal processing applications is that instead of immediately ana-
lyzing received signals for echo pulse detection (Pfennigbauer 
et al. 2009), the entire shape of the reflected echo of each laser 
pulse is stored (Ullrich and Reichert  2005). This allows for 
the extraction of more information from the LiDAR signal 
than just the peak. Two commonly cited methods are peak 
detection-based algorithms (Chauve et  al.  2007; Mallet and 
Bretar 2009; Pfennigbauer et al. 2009, 2022) and the surface-
volume-bottom (SVB) algorithm (Schwarz et al. 2019; Schwarz 
and Pfennigbauer  2024). The latter uses a physical model of 
the interaction between the laser pulse and the water column 
to improve point detection. Furthermore, specialized tools 
that exceed the processing of a single waveform have been 
shown to improve bottom echo detection, namely waveform 
averaging (Pan, Glennie, Hartzell, et  al.  2015; Pfennigbauer 
et  al.  2011; Mader et  al.  2021). Through the combination of 
multiple waveforms of close spatial proximity into a single 
waveform, the overall signal-to-noise ratio is increased, allow-
ing the detection of weaker echoes (Pfennigbauer et al. 2011; 
Mader et al. 2021).

Current research on topo-bathymetric LiDAR for whitewa-
ter has focused mainly on air-water flows (Hall et al. 2012; Li 
et al. 2019, 2022) or underlined the challenges in the whitewater 
section (Awadallah et al. 2023; Skinner 2011). Among these chal-
lenges are the hazardous environment for personnel, fast and 
shallow waters hindering SONAR measurements, and sparse 
penetration of LiDAR through the whitewater (Awadallah 
et al. 2023; Skinner 2011). However, previous studies have not 
provided methodologies to improve full-waveform processing. 
Therefore, this study aims to extend current LiDAR processing 
methodologies to capture terrain points within whitewater rap-
ids. The goal is to improve automated terrain mapping of moun-
tain rivers and to increase the spatial coverage of bathymetry 
data for mountain rivers.

In our study, we first introduce three river datasets (Section 2), 
where we use a well-researched pre-alpine river in Lower 
Austria as a reference dataset and two mountain rivers lo-
cated in the central Alps as test sites. Based only on the refer-
ence dataset, we present the fundamental techniques used for 
the full-waveform LiDAR analysis (Section 3) and introduce 
a minimal parameter curve fitting for the LiDAR interaction 
with the water column (Section 3.1.2). This approximation of 
the LiDAR waveform can then be used to extract additional 
points from the whitewater waveforms by analyzing the dif-
ferences in energy between the recorded laser pulse (as a 
full-waveform) and the theoretical return based on the curve 
fitting (Section 3.2). Our method is applied to each waveform 
that produces a water surface point. For each waveform, curve 
fitting is applied and, if successful, the residual is calculated. 
For these residuals, peak detection (Virtanen et  al.  2020) 
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extracts potential whitewater bottom returns, filtered by dis-
tance from the water surface (greater than 20 cm), minimal 
horizontal distance to the next peak of the waveform (approx-
imately 8 ns) and echo number (must be the second echo). The 
newly extracted points are then evaluated against the mea-
sured reference data from river transects. In this way, we rig-
orously assess the method (Section 4) and thoroughly discuss 
the results obtained (Section 5).

2   |   Materials

The presented study consists of multiple areas (Pielach [Austria], 
Fischbach [Austria], and Passer [Italy]) and different types of 
data (full-waveform LiDAR and reference measurements). The 
differences between the sites and the extent of the data are out-
lined in this section, providing the materials for the intended 
analysis, as well as the required background.

2.1   |   Surveyed Areas

The Pielach is a pre-alpine river that has retained natural self-
forming morphological characteristics and has a mean flow 
rate of 6.5 m3 ∕s with almost no whitewater (Mandlburger 
et  al.  2015; Panchan et  al.  2022). In contrast to the Pielach 
River, both the Passer and Fischbach River can be character-
ized as mountain rivers with steep slopes of 2% and 8% incli-
nation, respectively, broad grain size distributions including 
large immobile boulders, and numerous whitewater sections. 
The Passer River has a plane-bed morphology and a mean dis-
charge of about 11.5 m3 ∕s. The Fischbach River has a step-pool 
morphology with a average discharge of about 3.5 m3 ∕s. These 
differences can be seen both in the general area around the sur-
veyed sites and in the orthophotos of the representative sections 
shown in Figure 1. The Pielach River is later used as a reference 
dataset for the waveform fitting, as it is a standard measure-
ment environment with an extensive reference measurement 
coverage (Mandlburger et al. 2025). This allows us to establish 
our methodology first on a lower-slope gravel-bed river section 
and then apply the gained insights to whitewater rapids and ex-
tend the scope of what is currently considered viable for LiDAR 
bathymetry.

2.2   |   Datasets

Each site was surveyed with a bathymetric laser scanner 
mounted on a UAV platform. In all cases, the system used was 
a RIEGL VQ-840-GL topo-bathymetric laser scanner with a 
wavelength of 532 nm and full-waveform recording. In more 
detail, the average laser footprint on the ground ranged from 
around 6 cm for the Pielach study site to approximately 20 cm for 
the mountain rivers according to the selected scanner settings 
(Table 1). The difference in flight altitudes between the Pielach 
study site and the mountain rivers is mainly driven by external 
circumstances. The region of Lower Austria experienced a major 
flood event in September 2024 (Blöschl 2024; Rhomberg-Kauert 
et al. 2025). Therefore, this site was mapped at a higher detail 
and with a different focus in mind during data acquisition, and 
here only serves as a reference dataset.

For each laser scan, the data was processed using the SVB algo-
rithm and exported as a point cloud in a georeferenced coordi-
nate system (ETRS89, UTM33N; EPSG: 25833) for the Pielach 
River or a local project coordinate system (PCS) for the moun-
tain rivers.

The reference data for the three river datasets consists of 
in  situ measurements recorded by a two-person team using 
a total station and a reflector pole. For all three study sites, 
the registration between the LiDAR point cloud and reference 
measurements was achieved using alignment reference ob-
jects (e.g., planes).

For each site, a representative cross section is shown in 
Figure 2A,C,E corresponding to the orthophotos of Figure 1, to-
gether with a selection of the waveforms recorded in the center 
region of the cross section (Figure 2A,D,F).

2.3   |   Data Preprocessing

LiDAR data tend to be noisy, especially for bathymetric LiDAR, 
as the water column backscattering introduces a high amount of 
noise due to multipath effects and unwanted echoes reflected by 
suspended sediment. Thus, the outlier removal selected for data 
cleaning in this study is a clustering approach, using density-
based clustering (DBSCAN) with an epsilon parameter of 0.3 
(Ester et  al.  1996; Schubert et  al.  2017; Pedregosa et  al.  2011), 
similar to previous studies (Rhomberg-Kauert, Dammert, 
et al. 2024).

3   |   Methods

To extend current full-waveform LiDAR processing toward 
the application in whitewater rapids (Figure 3), we first build 
a theoretical framework of the LiDAR interaction with the 
water column by convoluting a Gaussian pulse with an ex-
ponential decay function. This idealized bathymetric LiDAR 
waveform can then be fitted to the averaged waveform to out-
line general trends for the laser-water interaction in white-
water rapids (Figure  3—analysis of combined waveforms). 
Second, we apply the theoretical model to the individual 
whitewater waveforms using curve fitting and perform an 
analysis of the difference between the idealized laser–water 
interaction and the recorded waveform (Figure  3—analysis 
of individual waveforms) from which the new points can be 
extracted.

3.1   |   Analysis of Combined Waveforms

To analyze the different waveforms at all three study sites, we 
introduce two main tools: First, waveform averaging, which 
combines multiple waveforms into a single generalized one. 
Second, the curve fitting of a water column backscattering func-
tion. Waveform averaging is used to outline the general char-
acteristics of similar laser pulses with close spatial proximity. 
The curve fitting represents an idealized interaction of the laser 
pulse with the water column, based on the water column back-
scattering given by the convolution of a Gaussian pulse with an 
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exponential decay function. In our study, waveform averaging 
is used to identify the general waveform behavior (Section 4.1) 
while curve fitting is used for the whitewater point extraction 
(Section 4.2).

3.1.1   |   Waveform Averaging

The underlying idea of waveform averaging is to combine 
multiple waveforms into a single waveform. However, under 

FIGURE 1    |    Overview of the study sites (red area), orthophotos of three representative regions of each site (BEV 2024) and digital terrain model 
(20 cm resolution) overlaid on the orthophoto. (A) Pielach River (48.2153° N, 15.3732° E) in Lower Austria (Austria), (B) Passer River (46.7264° N, 
11.2010° E) in South Tyrol (Italy), and (C) Fischbach River (47.0728° N, 11.0070° E) in Tyrol (Austria). [Color figure can be viewed at wileyonlineli-
brary.com]
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real-world conditions, waveforms tend to display variations even 
in similar settings. Therefore, the waveforms have to first be ef-
ficiently combined. The first step is to select an area of similar 
terrain or waveforms of approximately equal shape. For exam-
ple, a similar distance between the water surface and bottom, 
with a flat water surface and even terrain, as is the case for parts 
of the Pielach dataset. In the mountain rivers, a similar selec-
tion is achieved by combining waveforms of similar maximum 
amplitude.

As the LiDAR system is not stationary, the distance from 
the scanner to the water surface varies. Because the se-
lected waveforms have the same distance within the water, 
they can effectively be aligned by setting the starting time of 
the recorded waveform (the laser pulse hitting the water) to 
zero. Since all waveforms have the same start and are sim-
ilar in shape, we get a distribution of waveforms that looks 
similar to the scatterplot in Figure  4. Each combined time 
stamp has a variety of amplitudes corresponding to the input 
waveforms, and an average value can be calculated for each 

time stamp (Figure  4). To extract the final, averaged wave-
form, the last step in the waveform averaging workflow is the 
interpolation between the averaged amplitudes to obtain a 
smooth curve.

3.1.2   |   Curve Fitting

The function used for the laser-water interaction is based 
on the basic theoretical LiDAR model (Chauve et  al.  2007; 
Schwarz et  al.  2017), assuming that the laser pulse is of 
Gaussian shape and the interaction with the water column 
introduces an exponential decay component. This is trans-
formed into an empirical model, where we use minimal pa-
rameter (Table  2) curve fitting to approximate the reflected 
echo. For this, we first establish the standard Gaussian pulse 
as follows:

(1)f (t, a,�, �) = a ⋅ exp

(

−
(t−�)2

2�2

)

TABLE 1    |    Different settings and parameters of the LiDAR systems used in the surveys.

Location Sensor Flight altitude Beam divergence

Pielach RIEGL VQ-840-GL 60 ± 5 m 1 mrad

Passer RIEGL VQ-840-GL 106 ± 10 m 2 mrad

Fischbach RIEGL VQ-840-GL 102 ± 14 m 2 mrad

FIGURE 2    |    Cross sections of the three sections for each study, together with the recorded full-waveform data of the LiDAR system. The wave-
forms are extracted in the center of each cross section and set to start at zero. [Color figure can be viewed at wileyonlinelibrary.com]
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and the exponential decay function as follows:

The numerical convolution of these two functions can then be 
used as a base function for the curve fitting based on the LiDAR 
waveform. This convolution is given by

Using nonlinear least squares, this generalized function can 
now be fitted (Virtanen et al. 2020) to the averaged waveforms 
to analyze the general behavior of the water column backscat-
ter and the individual waveform in the extraction of whitewater 
points.

(2)�(t, �) = exp( − �t).

(3)

pt(a,�,�,�)= (f ∗ �)(t,a,�,�,�)

=

t

∫
0

f (�,a,�,�) ⋅�(t−�,�) d�.

FIGURE 3    |    Flowchart outlining the general waveform behavior (analysis of combined waveforms) and the single waveform whitewater point 
extraction (analysis of individual waveforms) outlined in the methods section. The main difference between the two workflows is that the analysis 
of combined waveforms uses multiple waveforms as input, while the analysis of individual waveforms is based on each recorded waveform. [Color 
figure can be viewed at wileyonlinelibrary.com]

FIGURE 4    |    Illustration of the waveform averaging. A scatterplot of 
the recorded samples (gray) with the mean value in black and the interpo-
lated curve in yellow. The averaged waveform here would correspond to 
the yellow curve. [Color figure can be viewed at wileyonlinelibrary.com]
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3.2   |   Analysis of Individual Waveforms

In order to extract bottom returns in the turbulent water of 
whitewater rapids, we need to differentiate the waveform into 
the water column backscattering and possible echoes fused 
within (Figure 5). Initially, recorded waveforms consist of dis-
crete sample intervals approximately every 0.5 ns, and therefore 
the first step in the whitewater workflow is to interpolate this 
waveform to a continuous curve. Next, the convolution shown 
in Equation  (3) is fitted to each recorded waveform. In this 
instance, we did not need to separate the first and secondary 
echoes, as the whitewater waveforms do not feature the classical 
second echoes. To compare the interpolated waveform and the 
fitted curve point-wise, the temporal resolution for both func-
tions is set to a factor of 16 times the recorded sampling rate, 

as this matches the numerical convolution output (Virtanen 
et al. 2020) and thus later downsampling can be avoided.

This results in two cases: (i) no fitting is possible (optimal param-
eters cannot be computed within 250 iterations), which means no 
further analysis can be done, and no new points are assigned. In 
the second case (ii), an idealized function representing the water 
column backscattering can be fitted to the interpolated waveform. 
We subtract the fitted convolution from the interpolated waveform 
for each sample and thus get a residual curve for the remaining 
amplitude. The residual curve now represents the energy not at-
tributed to the water column, and therefore, we can use peak detec-
tion to extract potential new echoes. The temporal position of these 
maxima, together with the recorded beam vector, corresponds to 
the new terrain points extracted within the whitewater rapid.

We also introduce filter criteria for extracted peaks to improve 
the signal-to-noise ratio in the data, as the whitewater waveform 
tends to have deviating shapes from classical bathymetric LiDAR 
waveforms. Initially, all new points must be later in time than the 
recorded point of the analyzed waveform (the surface echo), and 
the method is only applied to waveforms that do not have a second 
echo (bottom echo). As the mountain rivers are not obstructed by 
vegetation, this focus on single echoes implies that only water sur-
face echoes were recorded and therefore no distinction between 
extracted echoes and bottom echoes has to be made.

Furthermore, depending on the depth of the water, a supervised 
threshold is set to focus on the second peak of the residual curve 
and a minimum distance from the surface of 20 cm is set to avoid 
artifacts from the surface of the whitewater (Figure 3). Finally, 
the points extracted in this manner are cleaned by density-based 
clustering (Section  2.3) to remove additional false echoes not 
directly linked to the terrain. This leaves our final set of new 
points that correspond to the river bottom.

3.3   |   Evaluation Methods

To provide an independent reference for the waveform fitting 
outside the mountain rivers, we evaluate the waveform fitting on 
a gravel-bed river (the Pielach River). Waveform averaging was 
used to first create a general function, and secondly, the function 
is fitted to each individual curve of the averaged waveform. For 
each waveform, a deviation from the fitting can be calculated, 
given by the median absolute deviation (MAD) in relation to the 
maximum amplitude of the waveform.

4   |   Results

The results are divided into two sections: the general trends of 
the recorded waveforms for all three rivers examined with wave-
form averaging and the extraction of new points in the whitewa-
ter rapids, together with the comparison to the reference data.

4.1   |   General Waveform Analysis

The first part of the results section focuses on the general be-
havior of the full-waveform data of a gravel bed river. Waveform 

TABLE 2    |    Table outlining the different variables for the curve 
fitting towards the laser-water column-interaction.

Variable Reference

f Gaussian pulse

� Exponential decay function

pt LiDAR-water column-convolution

t Time (ns)

a Amplitude (ADC)

� Temporal position Gaussian pulse (ns)

� Width Gaussian pulse (ns)

� Backscattering coefficient (—)

� Convolution variable

FIGURE 5    |    Illustration of two waveforms observed in the whitewa-
ter section. High amplitude waveform in blue (A) and low amplitude 
waveform in orange (B) and the simulated waveform in black. The 
striped area denotes the difference, which is shown in the lower plots. 
The difference in panel B displays the potential bottom return extracted 
from the difference (marked maximum). [Color figure can be viewed at 
wileyonlinelibrary.com]
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averaging is used to evaluate the waveform fitting for typical 
gravel bed rivers and shows that there are bottom echoes within 
the recorded waveform for whitewater rapids.

4.1.1   |   Water Column Function

Applying the waveform averaging to the Pielach dataset, we can 
derive a generalized waveform for the cross section shown in 
Figure 2. The center-to-right part of the cross section exhibits 
similar water depths and smooth terrain, as the composition of 
the ground consists of small gravel, sand, and mud. This, along 
with the fairly smooth water surface of the river, presents nearly 
ideal conditions for testing the waveform fitting.

The samples of the selected waveforms, together with the av-
eraged curve as described in Section  3.1.1, can be seen in 
Figure 6A. The two distinct echoes are clearly visible, the first 
echo displaying the water surface, followed by subsequent water 
column backscattering, and the second echo being the bottom 
return. We focus on the water surface and the subsequent water 
column backscatter to evaluate the waveform fitting (Figure 6B). 

The black and yellow curves display an overall similar behavior 
with some degree of variation after the peak. The results of the 
individual waveform evaluation (Section 3.3) show an offset of 
around 1% of the maximum amplitude for most curves, with al-
most all waveforms having less than 3% deviation (Figure 6C).

4.1.2   |   Whitewater Waveforms

We empirically separate the waveforms into three categories on 
the basis of the maximum detected amplitude. Waveforms with 
an amplitude greater than 2000 ADC display small to no devi-
ation from the fitted curves (Figure 7A,B). For the amplitudes 
between 1200 and 2000 ADC, the deviation from the waveform 
fitting is still small (Figure 7D), but has some more visible devi-
ation after the peak (Figure 7C). Lastly, the waveforms with an 
amplitude lower than 1200 ADC have a visible deviation after 
the peak of the waveform, similar to a second echo engulfed in 
the water column backscatter of the water surface (Figure 7E,F).

Based on these differences (dashed lines, Figure  7), the ex-
traction of the new points outlined in Section  3.2 becomes 
evident. Especially in Panels E and F of Figure 7, the residual 
exhibits a small secondary echo that can be used for peak detec-
tion to provide additional points within the whitewater rapids.

4.2   |   Single Waveform Whitewater Point 
Extraction

The second part of the results section focuses on the whitewater 
point extraction based on individual waveforms. We compare 
the newly derived whitewater bottom points with the reference 
measurements for both mountain rivers with a focus on the im-
provements in accuracy and point density.

4.2.1   |   Whitewater Bottom Points

The results of the whitewater bottom point extraction (Section 3.2) 
can be seen in Figure 8, where the four panels show the introduced 
cross sections (Section 2) before and after the method is applied.

In both sections, the turbulent whitewater results in few or 
no bottom returns even with advanced processing such as 
SVB, which is directly visible when comparing the river cross 
section for both the Passer and Fischbach River with the ac-
quired reference data for each cross section (Figure  8A,C). 
After applying the introduced workflow, both sections show 
an increase in bottom returns (Figure  8B,D), which match 
the acquired reference data to some extent. Furthermore, 
Figure 8B,D shows the difference between the new points and 
the outliers removed by the last clustering step of the method. 
In both cross sections, the points classified as outliers are to-
wards the waterline of the whitewater section, as there the 
density of the new points decreases. Thus, the clustering-
based outlier removal helps avoid false echoes in the transi-
tion area of the land-water boundary.

In contrast to the standard processing, the newly added 
points display a high degree of noise, which can be seen in the 

FIGURE 6    |    (A) Waveform averaging for the center section of the 
Pielach River (Figure 2A). (B) Averaged waveform (yellow) and the fit-
ted laser-water column-interaction for the first echo (black), the dashed 
line is the separation between both echoes. (C) Histogram of the devi-
ation between the curve fitting and the first echo for each waveform in 
the Pielach dataset, expressed as a percentage of the maximum ampli-
tude. [Color figure can be viewed at wileyonlinelibrary.com]
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varying vertical positions of the added data. Therefore, fur-
ther quantitative analysis is required to assess the accuracy 
of the extracted points in relation to the collected reference 
measurements.

4.2.2   |   Comparison to Reference Data

To evaluate the new points, we compare the measured reference 
data with the nearest neighbor in the point cloud and calculate 
the vertical difference between the two points. This is done for 
point-wise distances of up to 1 m to exclude reference data ac-
quired outside the river.

For the Pielach River control dataset, this leads to a minimum 
absolute deviation of 0.2 cm and a maximum absolute deviation 
of 6.2 cm for the selected cross section (Table 3). For the Pielach 
River, a rigorous registration of the point cloud on the refer-
ence measurements was performed using reference planes. For 
the mountain rivers, the poor GNSS signal quality, due to the 
mountainous environment, in combination with a less precise 
registration approach, leads to higher registration errors. This 
leaves the Pielach dataset with subcentimeter accuracy and the 
mountain river dataset with mean point accuracies between 9.2 
and 22.5 cm (Table 3).

For the two mountain rivers, the vertical distances to the ref-
erence data for the cross sections can be seen in Table 3, before 

and after the new points were added. For both mountain riv-
ers, there is a notable decrease in the vertical distances to the 
reference data after the application of the new method. For the 
Passer river, the mean and median accuracies improve by 11.4 
and 4.9 cm. Similarly, for the Fischbach River, the accuracies im-
prove by 17.9 and 14.2 cm.

For each river, multiple transects were acquired (Figure 9A,C), 
and the vertical distances can be calculated before and after 
the applied method. The results can be seen in Figure  9B,D. 
Furthermore, the results are given as numerical values of the 
mean and median distance in Table 3. There, a mean and me-
dian shift improvement of more than 15 cm can be seen, show-
ing an overall accuracy improvement in the data (Table 3) and, 
together with the results of Figure 8, highlighting the successful 
capture of bottom echoes in whitewater rapids.

In addition to the improvement in accuracy, the whitewater 
bottom points increase the overall point density by 12% for 
the Passer River and 27% for the Fischbach River, before the 
clustering-based filtering. The increase in density is calculated 
based on the initial points of the point cloud, limited to the man-
ually annotated underwater terrain. For the underwater terrain, 
the points per square meter thus increased by 24 points∕m2 for 
the Passer River and 33 points∕m2 for the Fischbach River.

The lower increase in point density compared to the signifi-
cant improvement in the mean and median distance from the 

FIGURE 7    |    Waveform averaging plots for different amplitude ranges for the Passer and Fischbach River. (A and B) Waveform averaging for wave-
forms with a maximum amplitude greater 2000 ADC. (C and D) Waveform averaging for waveforms with a maximum amplitude between 1200 and 
2000 ADC. (E and F) Waveform averaging for waveforms with a maximum amplitude less then 1200 ADC. [Color figure can be viewed at wileyon-
linelibrary.com]
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reference data is caused by the data gaps (Figure  1). In the 
whitewater rapids, standard processing resulted in a limited 
number of bottom points; thus, the nearest neighbor within 

the defined search radius is often further away than the ac-
tual bottom. In the less turbulent sections, consistent bot-
tom echoes could be extracted without the whitewater point 

FIGURE 8    |    Cross section plots of the (A, B) Passer and (C, D) Fischbach River (Figure 2) before and after the whitewater point extraction. Each 
plot displays, in addition to the LiDAR data, the measured reference data (gray boxes). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3    |    Table displaying the mean and median absolute vertical distances for each cross section and the total surveyed area (Figures 8 and 9).

Location
Mean distance 

before
Median distance 

before Mean distance after Median distance after

Pielach cross section 3.8 cm 4.3 cm — —

Passer cross section 41.7 cm 39.0 cm 13.2 cm 11.0 cm

Fischbach cross section 36.8 cm 39.5 cm 10.0 cm 7.8 cm

Passer 20.6 cm 12.3 cm 9.2 cm 7.4 cm

Fischbach 40.4 cm 37.7 cm 22.5 cm 13.5 cm
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extraction method (Figure 8). Therefore, the new whitewater 
points produced a substantial decrease in the distance to the 
reference points.

5   |   Discussion

Our study shows that we were able to capture bottom echoes in 
whitewater sections of rivers with our method. However, con-
cerns remain regarding the high degree of noise and overall de-
viation from the acquired reference data compared to standard 
bathymetric LiDAR accuracies. Therefore, the following section 
aims to evaluate the challenges in collecting reference data, out-
line possible improvements for future work, and critically dis-
cuss the results presented.

5.1   |   Reference Data Acquisition

The difficult environment of mountain rivers imposes various 
obstacles on the acquisition of high-precision reference data. 
These include the higher uncertainty of GNSS measurements 
in mountainous environments and the fluctuating accuracy of 
the reference measurements due to the high flow velocities act-
ing on the surveyor and the uneven terrain of the rivers, where 
varying boulder sizes lead to large vertical fluctuation during 
the transect measurements.

The first source of discrepancies is the georeferencing. The 
typical approach is to use GNSS measurements to trans-
form the local PCS in a global coordinate system (GCS) to 

align both LiDAR and reference measurements within the 
same coordinate system (Nesbit et  al.  2022; Mohamed and 
Wilkinson  2009). In normal measurement environments, 
this is done by ground control points, measured with GNSS 
(Mohamed and Wilkinson  2009; Stott et  al.  2020), but in 
mountainous environments, the satellite signal obstruction 
from the surrounding topography leads to less accurately 
measured ground control points. In the case of the Fischbach 
dataset, the georeferencing using ground control points was 
insufficient. Thus, we improved the georeferencing by using 
fixed features in the area (e.g., roads, tunnels, etc.) to account 
for differences between the PCS and the GCS for the selected 
ground control points. For these points, we see a vertical stan-
dard deviation of 2.4 cm, which is part of the potential devi-
ation in the evaluation. As for the Passer River, the data was 
referenced to a preexisting height control point, since the total 
station measurements and LiDAR data displayed discrepan-
cies of up to 10 cm before aligning the dataset.

Second, the reference measurement itself poses a challenge on 
its own, as the flow velocity in whitewater rapids is significantly 
higher and can, depending on the river morphology, reach val-
ues above 3 m/s (Magirl et al. 2009). Not only does the surveyor 
have to maintain a stable position in a highly turbulent flow and 
uneven terrain, but also has to keep the measurement pole with 
the mounted reflector as steady as possible to avoid inaccuracies 
in the measurement itself. This, in combination with the hetero-
geneous terrain, where small changes to the measured position 
constitute larger changes in the depth due to the rough nature 
of the river bed, leads to additional uncertainties in the refer-
ence data.

FIGURE 9    |    Evaluation of the complete river section surveyed. (A and B) Histograms of the absolute vertical distances to the reference measure-
ments for the Passer and the Fischbach River. “Before” refers to the initial LiDAR data, and “After” to the improvement through adding the whitewa-
ter points. (C and D) Orthophotos and map overview (OpenStreetMap Contributors 2017) of the two rivers with the new whitewater points in orange 
and the reference in grey. [Color figure can be viewed at wileyonlinelibrary.com]
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Finally, for the mountain river datasets, there is a chance of 
changes in the river topography, since the initial LiDAR mea-
surements were conducted in March and April 2024, while 
the references were measured in December 2024 and January 
2025. According to the gauge data available on each moun-
tain river, both river sections experienced a flood event with 
a one-year return interval. However, the reference data at the 
whitewater rapid locations was predominantly taken from 
large immobile rock boulders. However, this could be over-
come in future work with better planning during the low-flow 
season, allowing both types of measurements to be done at the 
same time.

The effect of these influences on the measurement can be seen 
in relation to the Pielach dataset, where a standard case for 
river bathymetry is displayed. The measurement accuracy to 
the reference was between 0.2 and 6.2 cm, where the mean 
deviation was 3.8 cm with a standard deviation of 1.6 cm. 
Furthermore, in the Pielach River dataset, the accuracy was 
additionally improved through saddle roof references, which 
allowed for a more accurate referencing of the LiDAR data to 
the reference data (Mandlburger et  al.  2025). Therefore, the 
lower precision of the new points calculated in the mountain 
river environment does not necessarily reflect poor results 
but is strongly influenced by the challenging environment of 
mountain rivers for reference data collection. Therefore, for 
a more detailed evaluation, further reference would be re-
quired with a more extensive measurement, ideally in a more 
controlled environment such as fish steps near dams or in a 
laboratory.

5.2   |   Waveform Processing

Another aspect with respect to the quality of the calculated 
whitewater points is the method used for the simulation of the 
laser-water column interaction and the echo extraction. For the 
water column backscattering simulation, different functions can 
be used for the initial laser pulse, such as a heavy-tailed curve 
(Rhomberg-Kauert, Pöppl, et al. 2024; Shen et al. 2017) or a more 
system-tailored function (Schwarz et al. 2017; Yang et al. 2023). 
These could more accurately represent the water column back-
scattering, leading to an improved residual. However, we de-
cided on our minimalistic waveform fitting approach to avoid 
overfitting.

Similarly, for the echo extraction from the residual signal, we 
use standard peak detection, which does not necessarily corre-
spond to the exact temporal position of the target. The method 
could be improved through different curve fitting techniques 
or power thresholds to better estimate the temporal position 
(Chauve et al. 2007; Schwarz et al. 2019).

5.3   |   Relevance for River Applications

Topo-bathymetric LiDAR applications for whitewater riv-
ers were previously considered difficult or even impossible 
(Awadallah et  al.  2023; Kastdalen et  al.  2024; Lague and 
Feldmann 2020). Topo-bathymetric LiDAR did not appear to 
be able to provide continuous spatial data on the topography of 

the riverbed, which meant that data gaps had to be ignored or 
filled using other techniques (Wiener and Pasternack  2022). 
In particular, the bathymetry of mountain rivers, with their 
highly variable riverbed structure, has a decisive influ-
ence on the flow process and thus on sediment transport. 
Consequently, a high spatial resolution is necessary to model 
the riverbed appropriately. If data gaps cannot be closed by ad-
ditional survey measurements (e.g., GNSS or total station), as 
is the case with inaccessible turbulent whitewater sections in 
mountain rivers (Strom et al. 2017), data interpolation reduces 
the reliability of the results of hydro- and morphodynamic as 
well as ecological river basin studies (Farò et al. 2023; Kinzel 
et al. 2012). With the outlined processing method, data gaps 
can be reduced and the entire field of topo-bathymetric LiDAR 
applications could be extended to more complex river applica-
tions (Ferguson et al. 2024). However, the outlined improve-
ments remain to be tested in future research, but the method 
highlights the potential of applying topo-bathymetric LiDAR 
to whitewater rivers. Thus, it is shown that this topic holds 
great value for further experiments and surveys on the accu-
racy and potential of bathymetric LiDAR in mountain river 
environments.

6   |   Conclusion

The study of whitewater rivers, in particular with remote-
sensing data, has long been regarded as challenging. With the 
application of recent advances in bathymetric full-waveform 
LiDAR and on the basis of our datasets, we present a case 
study for mapping such environments, at least to a degree of 
uncertainty. Through the introduction of waveform averag-
ing for both gravel-bed and mountain rivers, we have shown 
that the curve fitting approach reflects an idealized laser-
water interaction, and there are echoes within the whitewa-
ter waveforms not detected by standard LiDAR waveform 
processing. Furthermore, single-waveform-based whitewater 
point extraction is able to detect bottom returns within the 
rapids through the subtraction of an idealized water column 
backscattering, leading to a residual, where peak detection 
can extract additional echoes. These points have shown a 
mean vertical distance of 7.8 cm to 9.5 cm to the acquired ref-
erence data, while the initial point clouds without the white-
water bottom points showed a mean deviation of over 35 cm. 
However, the reference measurements and georeferencing are 
not without challenges, and future research should implement 
a more rigorous georeferencing framework. In conclusion, our 
method successfully improves terrain detection in whitewa-
ter sections and overcomes a major challenge in mountain 
river surveying, thus improving the general topo-bathymetric 
LiDAR signal processing and opening up new possibilities for 
hydraulic research and modeling.
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