The RIEGL® VQ-880-GH is a fully integrated airborne laser scanning system for combined topographic and bathymetric surveying. The system is offered with integrated and factory-calibrated high-end GNSS/IMU system and up to two cameras. The design allows flexible application of these components to meet specific requirements. Complemented by a RIEGL data recorder, the RIEGL VQ-880-GH LIDAR system can be installed on various platforms in a straightforward way.

The RIEGL VQ-880-GH carries out laser range measurements for high resolution surveying of underwater topography with a narrow, visible green laser beam, emitted from a powerful pulsed laser source. Subject to clarity, at this particular wavelength the laser beam penetrates water enabling measurement of submerged targets.

The distance measurement is based on the time-of-flight measurement with very short laser pulses and subsequent echo digitization and online waveform processing. To handle target situations with most complex multiple echo signals, beside the online waveform processing the digitized echo waveforms can be stored on the RIEGL solid state data recorder for subsequent off-line waveform analysis.

The laser beam is deflected in a circular scan pattern and hits the water surface at a nominally constant incidence angle. The VQ-880-GH comprises a high precision inertial measurement sensor for subsequent precise estimation of the instrument’s exact location and orientation. Two high-resolution digital cameras and an additional infrared laser scanner are integrated to supplement the data gained by the green laser scanner.

The rugged internal mechanical structure together with the dust- and splash water proof housing enables long-term operation on airborne platforms.

Typical applications include
- coastline and shallow water mapping
- acquiring base data for flood prevention
- measurement for aggradation zones
- habitat mapping
- surveying for hydraulic engineering
- hydro-archeological-surveying
RIEGL VQ-880-GH Scan Pattern

![Diagram showing scan patterns and echoes](image)

RIEGL VQ-880-GH Elements of Function and Operation

![Images of the VQ-880-GH front, side, and rear views](image)
RIEGL VQ-880-GH Main Dimensions

- Bottom view:
 - 330 mm
 - 451.2 mm
 - 364 mm
 - 4x M8x1.25 - 6H
 - Depth 20
 - Mounting threads

- Front view:
 - 489.5 mm
 - 103.5 mm
 - Connector panels

- Side view:
 - 27.5 mm

- Top view:
 - 660 mm
 - 580 mm
 - 370 mm
 - (4x) ø9
 - Mounting holes

All dimensions in mm

Data Sheet

Copyright RIEGL Laser Measurement Systems GmbH © 2019– All rights reserved.
Export Classification
The Topo-Bathymetric Airborne Laser Scanner VQ-880-GH has been designed and developed for commercial topographic, hydrographic and bathymetric surveying applications.

Laser Product Classification
Class 3B Laser Product according to IEC60825-1:2014

The following clause applies for instruments delivered into the United States. Complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed.3., as described in Laser Notice No. 56, dated May 8, 2019.

The instrument must be used only in combination with the appropriate laser safety box.

NOHD 1) 180 m 2)

1) NOHD — Nominal Ocular Hazard Distance, based upon MPE according to IEC60825-1:2014, for single pulse condition
2) NOHD is determined by green laser scanner, @ 80 lps, 1.1 mrad, 550 kHz; NOHD of the infrared laser scanner: 60 m @ 900 kHz

INFRARED LASER CHANNEL

Range Measurement Performance
Measuring Principle time of flight measurement, echo signal digitization, online waveform processing

Max. Measurement Range 3) 4) 5)

<table>
<thead>
<tr>
<th>Laser Pulse Repetition Rate</th>
<th>150 kHz</th>
<th>300 kHz</th>
<th>600 kHz</th>
<th>900 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural targets ≥20 %</td>
<td>1800 m</td>
<td>1300 m</td>
<td>950 m</td>
<td>800 m</td>
</tr>
<tr>
<td>natural targets ≥60 %</td>
<td>2800 m</td>
<td>2100 m</td>
<td>1600 m</td>
<td>1300 m</td>
</tr>
<tr>
<td>Max. Operating Flight Altitude 6) Above Ground Level (AGL)</td>
<td>1600 m (5250 ft.)</td>
<td>1100 m (3600 ft.)</td>
<td>850 m (2790 ft.)</td>
<td>700 m (2290 ft.)</td>
</tr>
</tbody>
</table>

Minimum Range 7)
10 m

Accuracy 8) 10)
25 mm

Precision 9) 10)
25 mm

Laser Pulse Repetition Rate 11) 12)
up to 900 kHz

Max. Effective Measurement Rate 6) 12)
47 000 meas./sec (@ 150 kHz PRR & 40° FOV)
93 000 meas./sec (@ 300 kHz PRR & 40° FOV)
186 000 meas./sec (@ 600 kHz PRR & 40° FOV)
279 000 meas./sec (@ 900 kHz PRR & 40° FOV)

Echo Signal Intensity
for each echo signal, high-resolution 16 bit intensity information is provided practically unlimited (details on request) 13)
1.064 nm (near infrared)
0.3 mrad 14)
30 mm @ 100 m, 150 mm @ 500 m, 300 mm @ 1000 m

Scanner Performance
Scanning Mechanism / Scan Pattern rotating polygon mirror / curved parallel lines
Field of View (selectable) ± 20° = 40°
Scan Speed (selectable) 28 - 200 scans/sec
Angular Step Width Δ θ (selectable) 0.006° ≤ Δ θ ≤ 0.042° (for PRR 600 kHz)
better than 0.001° [3.6 arcsec]

3) The following conditions are assumed: target larger than the footprint of the laser beam, average ambient brightness, visibility 23 km, perpendicular angle of incidence.
4) In bright sunlight, the operational range may be considerably shorter and the operational flight altitude may be considerably lower than under an overcast sky.
5) Ambiguity to be resolved by post-processing with RiMTA ALS software.
6) Reflectivity p ≥ 20%, 20° FOV, additional roll angle ±5°.
7) Limitations for range measurement capability does not consider laser safety.
8) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.
9) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.
10) One sigma @ 150 m range under RIEGL test conditions.
11) Rounded values.
12) User selectable.
13) If the laser beam hits, in part, more than one target, the laser’s pulse power is split accordingly. Thus, the achievable range is reduced.
14) Measured at the 1/e² points. 0.30 mrad corresponds to an increase of 30 cm of beam diameter per 1000 m distance.

Technical Data to be continued on page 5 and 6
GREEN LASER CHANNEL

Range Measurement Performance

Measuring Principle

time of flight measurement, echo signal digitization, online waveform processing, full waveform recording for post processing

Hydrography

Typ. Measurement Range

1.5 Secchi depth for bright ground (p≥80 %) 4)

Topography (diffuse reflecting targets)

Max. Measurement Range

natural targets p≥20 %

natural targets p≥60 %

Minimum Range

Accuracy 9) 10)

Precision 10) 11)

Laser Pulse Repetition Rate

up to 700 kHz 5)

Max. Effective Measurement Rate 5)

Precise 200 000 meas./sec (@ 200 kHz PRR)

200 000 meas./sec (@ 400 kHz PRR)

550 000 meas./sec (@ 550 kHz PRR)

700 000 meas./sec (@ 700 kHz PRR)

Echo Signal Intensity

Number of Targets per Pulse online waveform processing: up to 9, depending on measurement program 12)

532 nm, green

selectable, 0.7 up to 2.0 mrad 13)

Laser Wavelength

Scanner Performance

Scanning Mechanism / Scan Pattern rotating prism / circular

Field of View (selectable)

± 20° = 40°

Scan Speed (selectable)

30 - 80 lines per second (lps) 15)

Angular Step Width Δ θ (selectable)

0.02° ≤ Δ θ ≤ 0.052° for PRR 550 kHz

between consecutive laser shots

Angular Measurement Resolution

better than 0.001° (3.6 arcsec)

3) The Secchi depth is defined as the depth at which a standard black and white disc deployed into the water is no longer visible to the human eye.

4) at 650 m flight altitude

5) rounded values

6) The following conditions are assumed: target larger than the footprint of the laser beam, average ambient brightness, visibility 23 km, perpendicular angle of incidence, ambiguity to be resolved multiple time-around processing.

7) In bright sunlight, the operational range may be considerably shorter than under an overcast sky.

8) Reflectivity p = 20%, 40° FOV, additional roll angle ±5°

9) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.

10) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.

11) Topography, one sigma @ 150m range under RIEGL test conditions.

12) If the laser beam hits, in part, more than one target, the laser’s pulse power is split accordingly. Thus, the achievable range is reduced.

13) Measured at the 1/e² points. 1.0 mrad corresponds to an increase of 100 mm of beam diameter per 100 m distance.

14) The laser beam footprint values correspond to a beam divergence of 1 mrad.

15) One line corresponds to a full revolution (360°) of the scan mechanism which can be split into two user-defined segments.

3) The Secchi depth is defined as the depth at which a standard black and white disc deployed into the water is no longer visible to the human eye.

4) at 650 m flight altitude

5) rounded values

6) The following conditions are assumed: target larger than the footprint of the laser beam, average ambient brightness, visibility 23 km, perpendicular angle of incidence, ambiguity to be resolved multiple time-around processing.

7) In bright sunlight, the operational range may be considerably shorter than under an overcast sky.

8) Reflectivity p = 20%, 40° FOV, additional roll angle ±5°

9) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.

10) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.

11) Topography, one sigma @ 150m range under RIEGL test conditions.

12) If the laser beam hits, in part, more than one target, the laser’s pulse power is split accordingly. Thus, the achievable range is reduced.

13) Measured at the 1/e² points. 1.0 mrad corresponds to an increase of 100 mm of beam diameter per 100 m distance.

14) The laser beam footprint values correspond to a beam divergence of 1 mrad.

15) One line corresponds to a full revolution (360°) of the scan mechanism which can be split into two user-defined segments.
RIEGL VQ-880-GH Technical Data

IMU/GNSS Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMU Accuracy (°)</td>
<td>0.0025°</td>
</tr>
<tr>
<td>Roll, Pitch</td>
<td>0.005°</td>
</tr>
<tr>
<td>Heading</td>
<td>0.005°</td>
</tr>
<tr>
<td>IMU Sampling Rate (Hz)</td>
<td>200 Hz</td>
</tr>
<tr>
<td>Position Accuracy (typ.)</td>
<td>horizontal / vertical</td>
</tr>
<tr>
<td></td>
<td><0.05 m / <0.1 m</td>
</tr>
</tbody>
</table>

Integrated Digital Cameras

- **RGB and/or IR Camera**
 - Sensor Resolution: up to 100 MPixel CMOS without FMC or up to 80 MPixel CCD with FMC
 - Sensor Dimensions (diagonal): 67.2 mm (medium format)
 - Focal Length of Camera Lens: 50 mm
 - Field of View (FOV): approx. 56.2° x 43.7°
 - Interface: USB 3.0
 - Data Storage: separate dedicated data recorder

Data Interfaces

- **LAN 10/100/1 000 Mbit/sec**
- **High Speed Serial Dual Glass Fiber Link to RIEGL Data Recorder**
- **Serial RS232 interface for data string with GNSS-time information, TTL input for 1 PPS synchronization pulse**

General Technical Data

- **Power Supply Input Voltage**: 18 - 32 V DC
- **Power Consumption typ.**
 - Without IMU/GNSS/cameras: 330 W
 - With IMU/GNSS/cameras: 370 W
 - Max.: 400 W
- **Main Dimensions (flange diameter x height)**: 489.5 mm x 660 mm x 580 mm
- **Weight**: approx. 70 kg
- **Humidity**: non condensing
- **Protection Class Scan Head**: IP54, dust and splash-proof
- **Max. Flight Altitude**
 - Operating: 16 500 ft (5 000 m)
 - Not operating: 18 000 ft (5 500 m)
- **Temperature Range**
 - Operation / Storage: 0°C up to +40°C / -10°C up to +50°C

1. The INS configuration of the RIEGL VQ-880-GH Laser Scanning System can be modified to the customer's requirements.
2. The installed IMU is listed neither in the European Export Control List (i.e. Annex 1 of Council Regulation 428/2009) nor in the Canadian Export Control List. Detailed information on certain cases will be provided on request.
3. One sigma values, no GNSS outages, post-processed during base station data.
4. The camera configuration of the RIEGL VQ-880-GH Laser Scanning System can be modified to the customer's requirements.
5. Forward Motion Compensation
6. to be used for external GNSS receiver
7. @ 20°C ambient temperature, 100 kHz PRR, 100 scans/sec
8. For standard atmospheric conditions: 1013 mbar, +15°C at sea level

RIEGL Laser Measurement Systems GmbH
Riedenburgstraße 48
3580 Horn, Austria
Phone: +43 2982 4211
office@riegl.co.at | www.riegl.com

RIEGL USA Inc.
info@rieglusa.com | www.rieglusa.com

RIEGL Japan Ltd.
info@riegl-japan.co.jp | www.riegl-japan.co.jp

RIEGL China Ltd.
info@riegl.cn | www.riegl.cn

RIEGL Australia Pty Ltd.
info@riegl.com.au | www.riegl.com

Data Sheet, RIEGL VQ-880-GH, 2019-09-02

Copyright RIEGL Laser Measurement Systems GmbH © 2019 - All rights reserved.

This data sheet is compiled with care. However, errors cannot be fully excluded and alterations might be necessary.