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A B S T R A C T

We present an approach for automatically detecting the positions of tree trunks, for determining their
corresponding diameter at breast height (DBH), and for assessing the shape of tree trunks from 3D point
clouds derived from unmanned aerial vehicle borne laser scanning (ULS). The experiments are carried out
with point clouds from both a RIEGL miniVUX-1DL and from a RIEGL VUX-1UAV. The results reveal that
the autonomous stem detection recognizes 91.0% and 77.6% of the stems, respectively, and that the DBH
can be modeled with biases of 2.86 cm and 0.95 cm for 80.6% and 61.2% of the trees, when compared
to field measurements. We further demonstrate that, compared to terrestrial laser scanning (TLS) data, the
stem diameters along the tree can be estimated with biases below 3.4 cm and 1.4 cm for the two systems,
respectively, up to a tree height of 12 m for stems with a DBH above 20 cm. Our experiments further reveal
the accuracy of diameter estimations to be mainly dominated by the tree’s diameter with better accuracies for
larger stems, while the completeness, with which a stem is covered by points, has little influence, as long as
half of the stem circumference is captured. The absolute point count on the stem does not impact the estimation
accuracy of all stem parameters, but is critical to the completeness with which a scene can be reconstructed.
Conversely, we demonstrate the precision of the laser scanner to be a key factor for the accuracy of the stem
diameter estimations, as in our experiments, we found the accuracies of the estimations from the VUX-1UAV
to be higher than the ones from the miniVUX-1DL. The findings of our study assist to evaluate the potential
of ULS for forest monitoring and management and allow for conclusions regarding the required point cloud
qualities and, thus, the mission planning of ULS acquisitions, in order to deliver data products, which fulfill
the requirements for an operational application in forest inventories.
. Introduction

Forest inventories (FIs) aim at the acquisition of forest survey data
n order to monitor the state and changes of the forests on management
r country wide scales (McRoberts and Tomppo, 2007). Accurate sur-
ey data on single tree level thereby forms the basis of FIs, as single
rees represent the basic entity for plot-level measurements (Saarinen
t al., 2017).

The tree stem, in this context, has a vital role for biomass esti-
ations, as it stores a substantial portion of a single tree’s biomass

Muukkonen, 2006; Yu et al., 2013). Furthermore, the stem, as being
he main merchantable good, is of major importance for the timber
roduction industry, whereby stem metrics are incorporated in forest
rowth models (Vauhkonen et al., 2014). Finally, tree stem metrics
erve as indicators of the wood quality (Van Leeuwen et al., 2011).

The biomass of a single tree can be deduced from allometric models,
hich take in general the stem diameter at breast height (DBH), the

∗ Corresponding author.

tree species and the tree height as input variables (e.g., Keith et al.,
2000; Jenkins et al., 2003). Traditional field inventories rely on manual
measurements of DBH using hand-held tools such as a caliper. This al-
lows accurate estimates of DBH growth in multi-temporal FIs. Yet, field
inventories are time-consuming (Liang et al., 2016; Piermattei et al.,
2019) and the available allometric models do not consider the local
characteristics of trees due to e.g., growth conditions. Furthermore,
they neither comprise the measurement of the taper function, which
describes the stem diameter as function of tree height, and which is
used to derive the stem volume and to estimate the wood quality (Liang
et al., 2014; Saarinen et al., 2017). Terrestrial laser scanning (TLS)
represents a promising alternative to such field inventories, as it pro-
vides a three-dimensional representation of the forest scene in a fast
and accurate way, and in millimeter-resolution. This, again, allows for
the derivation of single tree parameters at plot level with accuracies
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comparable to field measurements, and in a reproducible way (Liang
et al., 2016, 2018; Piermattei et al., 2019).

In the last two decades, several algorithms to extract tree infor-
mation from TLS point clouds have been developed. Pfeifer and Win-
terhalder (2004), Thies et al. (2004) and Maas et al. (2008) demon-
strated the feasibility to reconstruct the stems from TLS point clouds
using cylinder elements, which were fitted to the stem points, and
their approaches have been further automated and refined ever since
(e.g., Liang et al., 2012, 2014), also addressing the reconstruction of
non-circular stem-cross sections (Wang et al., 2017), and tackling the
automated delineation of wood and leaf points, which is a prerequisite
for proper stem modeling (Wang et al., 2016a, 2019). A comprehensive
overview of available algorithms is given in Liang et al. (2018).

The accuracies of the derived stem diameter estimates were found
to meet the accuracies required for FIs (Liang et al., 2016, 2018). The
presented approaches further allowed the derivation of additional stem
metrics such as the stem curve, which describes the diameter at any
height of the stem, and, deduced from it, the stem volume.

For tree reconstructions beyond the stem, Raumonen et al. (2013)
and Hackenberg et al. (2015) proposed quantitative structure models
(QSMs), which use geometrical primitives for the modeling of the entire
tree architecture including branches and twigs. Such QSMs allow for
the estimation of the biomass of single trees up to plot level (Calders
et al., 2015, 2018).

Apart from those purely data-driven approaches, models have been
proposed which incorporate assumptions on tree growth or light avail-
ability for the reconstruction of the tree architecture, including the
foliage (Côté et al., 2009, 2011; Bremer et al., 2017, 2018). The
advantage of these approaches, despite their high computational effort,
is that they can handle shortcomings in data quality, such as the typical
TLS problems of occlusions and wind. Such models are of value for
studies aiming at canopy structure descriptions (Côté et al., 2009, 2011)
or the incorporation in sensor simulation frameworks (Bremer et al.,
2017), but also allow for tree volume estimations (Bremer et al., 2018).

Yet, TLS is labour intensive and therefore expensive (Wilkes et al.,
2017; Brede et al., 2019), which limits its general application for the
acquisition of forest inventory data at plot level. With the advent of
unmanned aerial vehicle (UAV) based laser scanning (ULS), we have
a promising tool at disposal for the acquisition of forest structures at
larger extents (Jaakkola et al., 2010; Wallace et al., 2012; Mandlburger
et al., 2015). Early studies illustrated the potential to retrieve single
tree parameters such as tree location and height, crown area, and
crown volume from ULS data (Jaakkola et al., 2010; Wallace et al.,
2012, 2014). With the advances in the platform and sensor systems,
it is possible to capture the forest structure in a similar way and
with a similar level of detail on stems and branches as with TLS
systems (Morsdorf et al., 2017; Liang et al., 2019). The potential to
retrieve the DBH from ULS point clouds has been demonstrated (Brede
et al., 2017; Wieser et al., 2017), although the stem locations were
manually detected in these studies. Liang et al. (2019) proved the
applicability of stem reconstruction algorithms developed for TLS data
on ULS datasets for the retrieval of the DBH, the stem curve and
the stem volume, respectively, but reported lower accuracies of the
respective parameters derived from ULS than from TLS datasets. Brede
et al. (2019) reconstructed an entire forest plot with QSMs and found
reliable tree volume estimations for large trees, when compared to TLS.

Despite the demonstration of the potential to reconstruct trees from
ULS data, and to retrieve forest inventory parameters, Brede et al.
(2019) and Liang et al. (2019) stressed that the accuracies of today’s
ULS systems limit the accuracies of these estimated parameters. In
our study we investigate the potential of two ULS systems for the
retrieval of forest inventory parameters, and particularly focus on the
influence of the deployed sensor system and acquisition characteristics,
respectively, on the accuracy of the deduced tree parameters. We adapt
existing stem reconstruction approaches for TLS for the application
with ULS data and present a framework which allows the autonomous
29
Fig. 1. DBH distribution of the 67 trees as measured in the field. Bin width is set to
5 cm.

stem reconstruction, including the stem detection. Modifications for the
use of ULS data were necessary, as, despite the mentioned similarities in
the achieved level of detail, the point density in ULS typically is lower
than in TLS datasets and the height of the strongest occlusion effects
are reversed (Morsdorf et al., 2018; Liang et al., 2019; Schneider et al.,
2019).

The reconstructed forest scene allows us to devote attention to four
aspects of the stem modeling from ULS data, which are:

1. the completeness of automated stem detection and the accuracy
with which the DBHs of individual trees can be derived from ULS
and from TLS datasets, respectively

2. the feasibility to reconstruct tree stems from ULS data, and the
accuracy with which tree stem diameters can be retrieved across
the tree heights, when compared to the stem models from TLS;
this also includes the completeness of the reconstruction, i.e., the
number of trees within the scene

3. how the point cloud quality affects the feasibility to estimate
stem diameters across tree heights, and the accuracy, which can
be achieved

4. the impact of the sensor’s range accuracy on the accuracy of the
derived stem diameters

The findings allow to draw conclusions on the potential of ULS in
FIs, on the ULS sensor systems which are suitable for the retrieval of
the respective parameters, and what the requirements are regarding the
acquisition schemes.

2. Data

2.1. Study area

The forest scene, which we reconstructed, covers an area of 42 ×
44 m2, located in north-eastern Austria, centered at 48◦ 31′ 50′′ N,
15◦ 11′ 57′′ E (WGS84) and a mean elevation of around 800 m above
sea level (Fig. 2). The test site is characterized by flat terrain, covered
by coniferous tree species and little understory. Tree heights range from
7.9 m to 34.4 m, with DBHs in the range of 9.6 cm to 64.3 cm (Fig. 1).

2.2. Field inventory

For a total of 67 trees within the test site, a forest inventory consist-
ing of the tree positions, DBHs, stem circumferences and tree heights
was conducted. A caliper was used for the measurement of the DBHs,
while tree heights were measured with a Vertex Ultrasonic hypsometer
(HAGLOF INC, Madison MS, USA). We took the stem circumference as
basis for the diameter references in our study. The stems were divided
into three stem classes for the analysis, based on their DBH (Table 1).
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Fig. 2. CHM derived from the miniVUX data of the test site (green), with the positions
of the 67 reference trees (red dots). Further depicted are the 15 TLS-scan positions
(black dots), and the flight trajectories of the miniVUX (red line) and the VUX-1 (blue
line), respectively. The background shows a shading of the terrain model derived from
the TLS dataset (gray). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Number of tree stems in three stem classes.

8 ≤ DBH < 20 cm 20 ≤ DBH < 40 cm DBH ≥ 40 cm

Number of trees 22 26 19

Table 2
Specifications of the deployed laser scanning systems. Accuracy refers to the conformity
of the range measurement with respect to the actual value and precision to the
repeatability of the measurement.

Sensor VZ-2000 miniVUX-1DL VUX-1UAV

Field of view +60◦/−40◦ 23◦ off-nadir 330◦

Scanning pattern Hemispheric Circular Linear
(Palmer scan)

Pulse repetition frequency 1 MHz 100 kHz 550 kHz
Wavelength 1550 nm 905 nm 1550 nm
Beam divergence 0.3 mrad 1.6 × 0.5 mrad 0.5 mrad
Footprint size @ 100 m ∼ 30 mm 160 × 50 mm 50 mm
Accuracy 8 mm @ 150 m 15 mm @ 50 m 10 mm @ 150 m
Precision 5 mm @ 150 m 10 mm @ 50 m 5 mm @ 150 m

2.3. TLS data

The TLS acquisition was carried out in May 2017 using a Riegl VZ-
2000 (RIEGL Laser Measurement Systems, Horn, Austria). Details on
the sensor are listed in Table 2. For the data acquisition, a horizontal
and a vertical beam step size of 0.2 mrad was applied, which resulted
in a point spacing of 6 mm at 30 m distance from the scanner. The
scene was captured from 15 scan positions, which were located in a
circular shape with a diameter of 60 m around the plot, and additional
scan positions within this circle in order to minimize occlusions by trees
(Fig. 2). The co-registration of the scans from the 15 positions was ac-
complished with a standard deviation of 3.6 mm using Riegl’s RiSCAN
PRO software (RIEGL Laser Measurement Systems, Horn, Austria).

2.4. ULS data

Two different ULS sensor systems were deployed for the airborne
data acquisition, namely a Riegl VUX-1UAV (subsequently referred to
as VUX-1) and a Riegl miniVUX-1DL (referred to as miniVUX), both
mounted on a RiCopter (RIEGL Laser Measurement Systems, Horn, Aus-
tria). The acquisitions were carried out on 8 November 2016 (VUX-1)
and on 31 January 2018 (miniVUX), respectively.
30
Table 3
Pulse and point density specifications within the test site for the ULS systems.

miniVUX-1DL VUX-1UAV

Mean Median Mean Median

Point density [pts/m2] 5716.0 4973.5 1831.1 1406.5
Pulse density [pulses/m2] 4044.4 3382 1402.0 1057.5

The flight path for the VUX-1 followed a regular criss-cross scheme
(blue trajectory in Fig. 2) at a mean flight altitude of around 70 m above
the terrain. During the flight mission, a larger area around the test site
was covered with a total of 18 flight strips, of which the test area was
present in five. The flight lines had a spacing of 80 m and 40 m in
west-east and in north-south direction, respectively.

For the miniVUX, an alternative trajectory configuration was ap-
plied, consisting of a pentagram-shaped flight pattern (red trajectory
in Fig. 2). The mean flight altitude for this mission was 65 m above the
terrain, with the centers of the neighboring pentagrams being between
40 m and 70 m from one another.

An overview of the sensor specifications with relevance for our
study is given in Table 2, while the pulse densities of the two flight
missions as well as the resulting point densities are reported in Table 3.

3. Methods

3.1. Stem reconstruction from ULS

The stem reconstruction consists of four sequential steps, comprising
of the identification of the stem locations (Steps 1 and 2 in Fig. 3), the
estimation of the DBH (Step 3) and the modeling of each tree trunk
from the bottom to the top through a stem tracing scheme (Step 4).

Previous studies, which estimated the DBH from ULS data, used
field-measured stem locations (Wieser et al., 2017) or manual inspec-
tion of the point cloud (Brede et al., 2017). However, we intended
to implement an autonomous stem detection. The initial detection of
the stem locations thereby was crucial for the retrieval of the DBH
and the stem curve in our approach, as the entire subsequent stem
reconstruction procedure based on these initially detected positions.

A number of studies have discussed the autonomous stem loca-
tion detection for TLS point clouds. The proposed approaches con-
sidered the local point densities within a certain height range (Olof-
sson et al., 2014), the local point distribution around each point,
represented by the normal vectors and the eigenvalues in the neigh-
borhood of each point (Liang et al., 2012, 2014), or a combination
of these two (Wang et al., 2016a,b). An alternative to point based
methods was presented by Heinzel and Huber (2017), who performed
3D morphological operations on voxelized point clouds.

However, the acquisition characteristics and the point cloud quality
between ULS and TLS differ fundamentally in three aspects. First, the
point densities in TLS datasets commonly are higher (Brede et al.,
2017). Second, the point density on a spot on the ground in the ULS
point cloud is primarily defined by the flight lines of the UAV (Brede
et al., 2017) contrary to TLS, for which the local point density is a
function of the distance to the scanner (Liang et al., 2012). Third,
occlusions in ULS acquisitions increase with increasing penetration
depth into the canopy (Morsdorf et al., 2018; Bruggisser et al., 2019).
As consequence of these three factors, we found the stem coverages
within our ULS point clouds to be less uniformly distributed both across
the stem heights, but also on different tree stems within the test site,
when compared to the TLS dataset.

In order to cope with the given differences in the point cloud
qualities, and in order to facilitate a fast computation, we pursued two
concepts with our algorithm: First, we were seeking an approach that
completely dispenses with normal vectors, which is reflected in Steps 1
and 3, respectively, of the stem reconstruction; second, we intended to
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Fig. 3. Processing work-flow for the autonomous stem detection and DBH retrieval. The main products that were evaluated in the experiment are written in bold.
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void a strict classification of the point cloud into wood and leaf points
Steps 2 and 4, respectively).

The workflow was built around the OPALS software package (Pfeifer
t al., 2014) in order to facilitate a fast computation, which can be
caled to larger extents.

.1.1. Step 1: Filtering of potential stem points
The basis of the entire computation consisted of a normalized point

loud, whereby the digital terrain model (DTM) was computed from the
espective ULS datasets in a hierarchical approach following Pfeifer and
andlburger (2017).

In Step 1, non-stem points were filtered out, only considering points
n a height slice between 0.4 and 3.2 m above the terrain. While Liang
t al. (2012) performed the stem detection within the entire point
loud, Olofsson et al. (2014) used a slice of 1 m height, what lowers
he computation cost. However, we considered the latter height slice to
e too small for the less dense ULS point clouds, why we adapted it to
ur data.

The idea is that stem points are characterized by a higher local
oint density than non-stem points. We therefore computed two point
tatistics describing the neighborhood around each point, consisting of
he point counts (number of points) and the average point distance,
hich corresponds to the mean distance of the edges of the Delaunay

riangulation of the point cloud in 2D. These two statistical metrics
ere computed for cylindrical neighborhoods of 20 cm radius around
ach point. However, in order to detect and subsequently remove large
ranches, which have similar characteristics as stem points regarding
ocal point densities, we split the point selection into two subsets: first,
nly points within the search cylinder in the lower half of the height
lice were considered, whereas in a second round, only points in the
pper half were considered. Yet, the two metrics were computed for
ll points within the slice in both iterations, and the two statistical
etrics for each, the lower and the upper half of the search cylinder,
ere attributed to each point. Finally, only points with a minimum of
point within the upper and the lower half of the cylinder, and with

oint distances < 0.1 m were retained as potential stem points.

.1.2. Step 2: Autonomous stem location detection
The goal of Step 2 is to identify the stem positions and to estimate

he respective stem radii within the filtered slice of potential stem
oints in order to obtain the initial parameters for the cylinder fitting
n Step 3. We first computed the median of the point distributions in
- and 𝑦-direction based on a cylindrical neighborhood with 0.5 m
adius around each point from the filtered point cloud from Step 1.
31
edian points with vertical point distributions (z-range) exceeding
.5 m within this search cylinder subsequently were transformed into a
aster with a cell size of 10 cm (Fig. 4). The z-range threshold thereby
llowed to filter out dense understory, whose extent in z-range within
he search cylinder was lower, while the neighborhood for the median
omputation was chosen in accordance to the maximum stem diameter,
hich we expected to be below 1 m. The 10 cm raster size, finally,
eneralizes the median positions of the horizontal point distributions,
hich coincide more frequently in the actual stem center. The grid size
f 10 cm represents a trade-off between the resolution of the estimate
f the stem center (higher for smaller grid sizes) and the frequency with
hich the median values coincide within a cell (higher for coarser grid

izes).
Within the 10 cm raster with the median locations, we computed

he number of points falling into each cell and applied a local maximum
ilter with a search window size of 1 m. The x- and y-coordinates of the
ocal point count maxima were retained as tree locations. Here again,
he size of the neighborhood had a physical meaning, as we expected
rees to stand at least 1 m apart from each other.

The radius, finally, was set to the 75%-quantile of the distances
etween the detected stem locations and all potential stem points
ithin a cylindrical neighborhood of radius 0.6 m.

.1.3. Step 3: DBH retrieval
Various approaches to retrieve the diameter from the point cloud

xist. Olofsson et al. (2014) and Saarinen et al. (2017) demonstrated
ircle fitting to be feasible for TLS-point clouds, while Brede et al.
2017) transferred this approach to ULS data. Wang et al. (2017) used
ourier series to reconstruct the perimeter of stems from TLS data,
hich allows the stem cross section to be non-circular. However, due

o occlusions in the ULS dataset, which resulted in some stems to be
nly partly captured, we decided to fit 3D-cylinders to a vertical subset
f the point cloud. Such a proceeding also was chosen by Liang et al.
2012, 2014) and by Wang et al. (2016a) for point clouds from TLS
nd by Wieser et al. (2017) for ULS data. We expected the results to be
ore robust in case of only partially recorded stems slices.

The actual cylinder fitting was performed through robust least
quares. The advantage of the approach lies in its ability to detect and
emove point outliers during the iterations and the final adjustment.

In the fitting process, the position, orientation and radius of a
ylinder for the designated stem points from Step 1 are sought. The

estimated stem locations and radii as found in Step 2 were taken as
initial parameters, and the fitting was performed for a point cloud
slice of 1.8 m height. For the retrieval of the DBH, the height of the
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Fig. 4. Illustration of the stem location detection. The red points represent a subset
of the point cloud slice between 0.4 m and 3.2 m, acquired by the VUX-1, after
filtering of potential stem points (Step 1). For each of the 121 points present in the
stem slice, the median values in 𝑥- and 𝑦-direction of the point distributions within
a cylindrical neighborhood with 0.5 m radius were computed and transformed into a
10 cm raster grid. The number of points with a median position falling into a respective
cell were counted and assigned to the cells (black cell: 118 points, gray cell: 3 points).
After applying the local maximum filtering on the median raster, a tree position of
5375295.48 N, 514702.61 E was estimated and taken as approximation of the stem
location for the cylinder fitting.

Table 4
Criteria for keeping a cylinder fitted to the stem points in Step 3, as valid solution. axis𝑋 ,
axis𝑌 , axis𝑍 correspond to the x-, y-, and z-component of the axis of the fitted cylinder,
𝛥 R to the discrepancy between the approximated radius from the point distributions
and the radius from the cylinder fitting, and residual to the radial standard deviation
of the points to the cylinder.

Criterion TLS miniVUX VUX1

min. DBH [cm] 20
max. DBH [cm] 100
axis𝑋 <0.3
axis𝑌 <0.3
axis𝑍 >0.9
max. 𝛥 R [m] 0.14
max. residual [m] 0.014 0.05 0.036

cylinder was centered at 1.3 m above the terrain. The height of the
point cloud slice, to which cylinders are fitted, was found through
prior experiments. The comparison of the success-rates of the cylinder
fitting and the accuracies of the estimated stem diameters to field
measurements revealed a trade-off between the completeness of stem
reconstruction and the accuracy of the diameter estimation, as more
stems could be modeled if the slice height was extended, while the
errors of the estimated diameters to the field reference were smaller
for smaller height ranges. The applied height of 1.8 m turned out to be
a good compromise and is in accordance to the height which was used
in Wieser et al. (2017).

Finally, the fitted cylinders were accepted if they fulfilled certain
criteria (Table 4) and were rejected otherwise.

3.1.4. Step 4: Stem modeling
Starting from the successfully modeled stem trunk at breast height,

each tree trunk was modeled individually with cylinders through a
stem tracing process along the stem axis towards the tree top. The
stem diameters were estimated from the planes at the vertical center
of the cylinders, whereby the height spacings between subsequent
vertical centers were set to 0.5 m. During the stem tracing, a point
cloud slice with a height of 1.8 m and centered at the height of the
next upper stem diameter was extracted from the point cloud. From
this point cloud slice, stem points were filtered based on two criteria:
First, we evaluated the local point density, which we measured as the
number of points and the mean point distance to neighbors (Fig. 5, left),
respectively, within a cylindrical neighborhood with a radius of 20 cm
32
around each point. Second, as we expected the stem points in the next
upper stem slice to be in the horizontal proximity of the preceding stem
center, we measured the distance of each point in the instantaneous
slice to the axis of the preceding cylinder. Only points with a minimum
point count of 3, a mean point distance < 0.029 m, and a maximum
distance to the stem axis < 1.5 times the radius of the previous cylinder
were retained. As in the stem filtering in Step 2, the remaining point
cloud still included points from large branches. We therefore computed
the vertical distribution of the points within a cylindrical neighborhood
of 30 cm radius around each point (Fig. 5, middle) and removed points
with a vertical point spread below 0.75 m. Identical to Step 3, we
then fitted a cylinder to the filtered point cloud slice, whereby the
median of the horizontal point distribution was chosen as cylinder
location and the radius of the previously fitted cylinder as radius for
the approximation of the current fit. In a final step, the parameters
of the fitted cylinder were validated and only cylinders were retained,
whose diameter and axis direction were comparable to the cylinder im-
mediately below, and furthermore fulfilled the criteria listed in Table 4
(Fig. 5, right). This processing step was continued as long as potential
stem points in an next upper stem slice were available and retained
after the two filtering steps. However, as it is possible that certain stem
parts are occluded for the scanner, we allowed the model to skip three
consecutive stem slices, but ultimately terminated the process if none
of these slices contained any stem points. The visual inspection showed
that in lower stem sections at most one slice is skipped, mainly because
individual stem sections were occluded. In contrast, point cloud slices
from upper stem sections contain more points of leaves, which makes
the recognition of the stem unreliable. The fitted cylinders therefore
violate the criteria from Table 4 why the maximum of three skips are
no limitation here neither.

3.2. TLS data processing

The stem reconstruction from the TLS dataset followed the same
four general steps as described for the ULS datasets (Fig. 3). However,
we made some adaptations in order to meet the differences in the point
cloud qualities between the two data sources, which predominantly
concerned the higher point density of the TLS dataset. Such modi-
fications were necessary for performance reasons, because, opposed
to Kankare et al. (2016), Puttonen et al. (2013) and Wang et al.
(2016a), we did not downsample the TLS point cloud prior to the
processing.

The first modification concerned the filtering of potential stem
points within a point cloud slice between 1.0 m and 2.6 m above terrain
(Step 1), which we did purely raster-based for the TLS dataset. Again,
we assumed stems to be characterized by higher local point densities,
opposed to non-fiber points, and by a larger spreading in vertical direc-
tion, opposed to branches. For each cell of size 10 cm, we computed
the number of points, the 10%-, 50%- and the 90%-quantiles of point
heights, and the point distribution in vertical direction (z-range), only
selecting points between 1.1 m and 1.5 m above ground. From the
computed number of points within each cell, we further computed the
median and the sum of points within a circular neighborhood of 50 cm
radius around each cell. These local point distribution descriptors
subsequently were used to filter potential stem points from the original
TLS point cloud, whereby we only retained points from cells containing
more than 30 points, had a z-range larger 30 cm, spacings larger 10 cm
between the 10%- and 50%-quantile, 10%- and 90%-quantile, and the
50%- and 90%-quantile, respectively, and containing more than 1000
points and a median equal to or larger 30 points, respectively, in the
enlarged neighborhood of 50 cm radius.

The approximations for the stem locations and the radii, respec-
tively, for the cylinder fitting were retrieved in the same way as for
the ULS datasets (Step 2). The higher point density compared to ULS,
however, allowed us to reduce the height of the point slice, to which
the cylinder was fitted, to 0.6 m (Step 3).
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Fig. 5. Example of the filtering of non-stem points and the cylinder fitting, respectively, during the stem tracing (Step 4), illustrated for a point cloud subset taken from the
miniVUX dataset and centered at 4.8 m above ground. Left: The unfiltered point cloud in the initial subset of the next upper stem slice, which also comprises non-stem points.
The points are colored according to the mean point distance. Points with mean point distances < 0.029 m, which are accepted as potential stem points, are colored in brown,
while points with larger mean point distances are colored in green. Middle: The subset after filtering based on the point count, the point distance to neighbors and the distance
to the axis criteria, colored according to the vertical point distribution within the neighborhood of each point. Right: The point cloud after filtering of non-stem points, colored
according to their distance to the fitted cylinder (red circle). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
The stem growing in Step 4, finally, was also slightly adapted.
First, the height of the slice with potential stem points in the next
upper point cloud slice was reduced to 1 m. Second, we computed
the point count and the point distribution in 𝑧-direction on raster basis
with cell sizes of 7 cm, in order to substitute the computation intense
point neighborhood search. With this modifications, we could transfer
the criteria for local point densities and vertical point spreadings,
respectively, from ULS to TLS point clouds. Only points from raster cells
with minimum counts of 15 points and a vertical spreading larger 0.6 m
were retained as stem points.

The residual threshold applied for the validation of the cylinder
fitting was also adjusted to the TLS point cloud (Table 4).

3.3. Experiments

All trees within the area of the field inventory plot were recon-
structed from the TLS and ULS point clouds (Fig. 6). Based on these
modeled stems, we tested the performance of the autonomous stem
reconstruction framework and the accuracies of the stem diameter
estimations in dependence of the acquisition and sensor characteristics
based on four aspects (RQ1 through RQ4), which we considered to be
good quality measures and which also shaded light on the potential of
ULS sensor systems in the context of FIs.
33
Fig. 6. Reconstructed tree stems from miniVUX (dark brown) and TLS (light brown)
within the study area. A subsampling of leaf points from the miniVUX dataset is shaded
in green. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3.3.1. Autonomous stem detection and DBH retrieval (RQ1)
Each detected stem location from the point clouds was compared to

the stems in the field inventory and a detected stem was accepted as
correct if its position was within a 0.5 m distance from an actual stem.
These stems correspond to true positives (TP). We then computed the
precision and the recall to evaluate the performance of the autonomous
stem detection:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

where FP corresponds to point cloud clusters which were recognized
as stems by our algorithm but were not reported in the field inventory
(false positives), and FN to stems in the field inventory, which were
not detected in the point cloud (false negatives).

The DBHs estimated from the point clouds were compared to the
measurements form the field inventory. The number of estimated DBHs,
which were retained after filtering of invalid solutions and which could
be matched to the field inventory, was counted and the accuracy of the
estimated DBH measured in terms of the bias and the RMSE :

𝑏𝑖𝑎𝑠 = 1
𝑛

𝑛
∑

𝑖=1

(

𝐷𝐵𝐻𝑙𝑠,𝑖 −𝐷𝐵𝐻𝑟𝑒𝑓 ,𝑖
)

(3)

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1

(

𝐷𝐵𝐻𝑙𝑠,𝑖 −𝐷𝐵𝐻𝑟𝑒𝑓 ,𝑖
)2

𝑛
(4)

𝐷𝐵𝐻𝑙𝑠,𝑖 thereby corresponds to the 𝑖th DBH estimation from the
point cloud, 𝐷𝐵𝐻𝑟𝑒𝑓 ,𝑖 to the respective measurement from the field
nventory, and 𝑛 to the number matched DBHs.

.3.2. Stem reconstruction (RQ2)
We used the stem diameters across the tree heights as retrieved

rom TLS through our processing chain as reference to which we
ompared the stem diameter estimates from the two ULS point clouds.
ach reconstructed tree stem from the ULS data was connected to a
tem derived from the TLS data, again applying a 0.5 m maximum
orizontal displacement threshold for the match. We computed the
ifference between the retrieved diameters across the stem height and
valuated the completeness with which the scene at each height could
e reconstructed.

.3.3. Effect of the point cloud quality (RQ3) and sensor characteristics
RQ4)

We analyzed how the number of points within a stem slice, and the
ompleteness with which a stem circumference was covered by points,
espectively, affected the accuracy of the estimated stem diameter
RQ3). To measure the coverage of the stem circumference, the stem
oints were projected onto a horizontal plane (Fig. 7). Assuming a
oughly circular stem cross section, we took the median of the point
istribution of a stem point slice as circle center and split the circle into
ight equal sectors with the orientation of the circular division towards
orth. A fraction of the stem circumference was considered as captured
f the corresponding circle sector contained at least three stem points
rojected onto the horizontal plane.

The influence of the sensor’s range precision on the diameter esti-
ates was tested based on the distance of the stem points to the fitted

ylinders, which was measured as the radial standard deviation of the
34

oints to the latter (RQ4). t
Fig. 7. Point cloud of a stem slice between 1.9 m and 3.7 m above ground from a tree
stem centered at 5375291.6 N, 514708.2 E. The points were acquired by the VUX-1
and projected onto a horizontal plane (black dots). The blue lines divide the point
cloud into eight equal sectors. In the example, six out the eight sectors contain points,
what corresponds to a stem coverage completeness of 0.75.

Table 5
Performance of the autonomous stem detection and of the stem reconstruction for DBH
estimation. Detected trees refers to the number of point clusters, which were regarded
s stems by our detection approach, Correctly detected trees is the number of these

clusters which could be linked to the field reference. Valid fitted stems corresponds to
the number of Detected trees, for which the cylinder fitting resulted in valid solutions,
Fitted and correct stems is the number of valid stem reconstructions which could be
linked to entries in the reference.

TLS miniVUX VUX-1

Detected trees 83 73 63
Correctly detected trees 65 65 55
Precision [%] 78.3 89.0 87.3
Recall [%] 97.0 97.0 82.1

Valid fitted stems 64 61 44
Fitted and correct stems 61 54 41
DBH bias [cm] −0.34 2.86 0.95
DBH RMSE [cm] 1.92 5.26 2.63

4. Results

4.1. Autonomous stem detection and DBH retrieval (RQ1)

Table 5 reports the number of trees which were correctly detected
within the TLS, the miniVUX and the VUX-1 point clouds in terms of
absolute numbers, precision and recall.

The autonomous stem detection recognized 83, 73 and 63 stem posi-
tions in the point clouds from TLS, miniVUX and VUX-1, respectively, of
which 65, 65 and 55 could be matched to stems in the field inventory.
Precision was higher for the miniVUX (89.0%) and the VUX-1 (87.3%)
datasets than for TLS (78.3%), while the recall was highest for TLS
(97.0%) and the miniVUX (97.0%) and a lower value for the VUX-1
(82.1%).

After elimination of invalid solutions (Table 4), 64 (77.1% of the
initially fitted cylinders), 61 (83.6%) and 44 (69.8%) DBH estimations
were retained for TLS, the miniVUX and the VUX-1, respectively, of
which 61 (completeness = 91.0%), 54 (completeness = 80.6%) and 41
(completeness = 61.2%) could be linked to trees in the field inventory
or the respective datasets. The accuracy of the DBH estimations was
ighest for TLS (bias = −0.34 cm, RMSE = 1.92 cm), followed by VUX-1
bias = 0.95 cm, RMSE = 2.63 cm) and lowest for the miniVUX (bias

2.86 cm, RMSE = 5.26 cm) (Fig. 8).

.2. Stem reconstruction

In our study, we took the diameter estimates from TLS as refer-
nce to which the estimates from ULS were compared. Fig. 9 shows
he difference between the diameter estimates from ULS and TLS in
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Fig. 8. Estimated DBHs from TLS (left), miniVUX (middle), and VUX-1 (right) compared to field measured DBHs. The black lines represent the 1:1 match. Further reported are
he number of retrieved DBH estimates (n), the respective completeness with regard to the stems in the field inventory, and the bias and the RMSE of the estimations.
Fig. 9. Deviations to the TLS estimated stem diameters of the stem diameters estimated
rom the miniVUX (left) and the VUX-1 (right) dataset, respectively, in dependence of
he stem diameters from TLS. Depicted are all estimated stem diameters in the range
etween 1.3 and 5.3 m. The blue lines depict the mean deviations between the systems
n 10 cm intervals on the stem diameter axis. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

ependence of the diameter measured from TLS. Only diameters up to
height of 5.3 m were selected for this first analysis, in order to prevent
bias introduced by leaves or small branches. The absolute deviations
etween the systems reveal small diameters to be overestimated from
he ULS datasets, particularly from the miniVUX data, however, with
decreasing trend (𝑅2 = −0.64 for the miniVUX, 𝑅2 = −0.28 for the

VUX-1) with increasing stem diameter sizes.
Due to this observed diameter dependency of the reconstruction

accuracy, we divided the stems into three stem size classes (Table 1)
to further investigate the accuracy of the diameter estimations from
the ULS datasets across the tree heights. Fig. 10 depicts the mean
and the standard deviations of differences between the stem diameters
estimated from TLS and the miniVUX, and the VUX-1, respectively,
across absolute tree heights in 1.5 m intervals, starting at breast height
(1.3 m). Three subsequent diameter estimations for each stem, taken
in 0.5 m intervals and centered around the evaluation heights, were
summarized as their mean diameter every 1.5 m, in order to avoid gaps
from missing diameter estimates due to occlusions or elimination of
cylinders with invalid parameters. Depicted alongside the differences
is the fraction of trees which could be reconstructed and resulted in
valid solutions on each tree height.

For all three stem classes and for all tree heights, largest discrep-
ancies in terms of the mean differences (bias) as well as the standard
deviation between TLS and ULS occurred in the smallest tree stem
class (DBH = 8 cm–20 cm, absolute differences between 0.5 cm–4.6 cm
and 2.3 cm–10.7 cm for VUX-1 and miniVUX, respectively). Diameter
differences for the larger two stem classes and up to a height of
14 m were smaller and in a comparable range for a respective sensor
35

(absolute differences between 0.1 cm–1.6 cm and 2.3 cm–4.0 cm for
VUX-1 and miniVUX, respectively, for DBH = 20 cm–40 cm; absolute
differences between 0.1 cm–1.1 cm and 0.5 cm–2.4 cm for VUX-1 and
miniVUX, respectively, for DBH > 40 cm). Above 14 m, the differences
between TLS and ULS increased. Considering the two deployed ULS
systems, we see that the differences between the VUX-1 and TLS were
smaller in general than the respective differences of the miniVUX.

The fraction of trees, which could be reconstructed from bottom to
top, was higher for the miniVUX than for the VUX-1 in general. Of the
24 trees with matches to TLS in the medium stem class, 45.8% could
be modeled up to 10 m from the miniVUX, while in the VUX-1 data,
the amount of 75% of the stems, which were initially detected, drops to
33.3% on 10 m. For the largest stem class, the rates amount to 77.8%
and 66.7% of successfully reconstructed stems on 10 m for the miniVUX
and the VUX-1, whereas in the VUX-1 dataset, 88.9% of the stems were
initially detected.

4.3. Effect of acquisition characteristics (RQ3) and sensor properties (RQ4)

The impact of the number of points on the accuracy of the diameter
estimations is depicted in Fig. 11 for 938 valid cylinders from the
miniVUX (left) and for 756 cylinders from the VUX-1 (right) dataset,
respectively, where the diameter differences between ULS and TLS are
shown as function of the number of points within a slice. The number
of points per slice after filtering of leaf- and branch-points ranged from
8 to 1145 for the miniVUX and from 6 to 294 for the VUX-1. The
results show the deviation between ULS and TLS to be independent of
the number of points (𝑅2 = −0.03 for the miniVUX, 𝑅2 = 0.02 for the
VUX-1).

The effect of the stem coverage is shown in Fig. 12, which illustrates
the deviation of the estimations from the miniVUX (left) and the VUX-1
(right) datasets to the TLS diameter estimates against the completeness,
with which the stem circumference was captured. 3.3% and 16.0% of
the stem slices with valid cylinder fits in the miniVUX and the VUX-1
dataset, respectively, were captured with coverages smaller than half
the stem circumference, while a full coverage of the stem marks the
largest coverage class for both systems. The mean difference of the
estimates from the miniVUX to TLS shows a decrease from 6.2 cm
to 2.7 cm for coverages of 50% to 100%. For the VUX-1, the mean
deviations to TLS in the respective classes are in ranges of 1.8 cm
to 1.01 cm. For stem coverages below half of the stem, differences
between the diameters from the miniVUX and TLS increase, but remain
relatively constant for the VUX-1. However, the standard deviations for
smaller coverages increase for both systems.

On the other hand, 51.5% and 69.2% of the stem slices, which could
not be reconstructed with cylinders from the miniVUX and the VUX-1
datasets, respectively, were captured with completeness below half of
the stem.

A final component, which interferes with all other aspects of the
measurement process, is the deployed sensor itself. Our interest was
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Fig. 10. Left to right: Absolute differences in the diameter estimations between ULS and TLS against absolute tree heights for stem classes 8 cm ≤ DBH < 20 cm, 20 cm ≤ DBH
< 40 cm, 40 cm ≤ x < 65 cm. Also depicted is the fraction of trees, which could be reconstructed on each height. 100% thereby corresponds to the number of trees (n) which
were detected in the TLS dataset at breast height and which could be matched to trees in the ULS datasets.
Fig. 11. Absolute difference between diameter estimations from ULS and TLS in
dependence of points within a slice for the miniVUX (left) and the VUX-1 (right). Seven
and two slices with relative errors larger 500% to the respective TLS estimations have
been removed for the visualization from the miniVUX and the VUX-1 data, respectively.
The blue solid line represents the bias to the TLS estimations, calculated in point count
intervals on the 𝑥-axis amounting to 10% of the maximum point count for the respective
system, but cut at the 97.5% quantile of the point counts, the dashed lines mark the
standard deviations. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 12. Absolute diameter estimation differences between ULS and TLS to the
completeness of stem coverage by points. The 𝑥-axis counts the stem eighths which
are filled with points. The dots represent the difference values of single stem slices.
The solid lines represent the bias of the ULS to the estimations from TLS per coverage
class for the miniVUX (left) and the VUX-1 (right), the shaded areas represent the
standard deviation of the differences. Further stated is the number of stem slices in
each class (top row).

to test whether the differences in the accuracies and precisions of the
two ULS sensor systems (Table 2) had an impact on the accuracy
of the diameter estimations. We therefore analyzed the dispersion of
the points within a stem slice around the fitted cylinder, which was
measured as radial standard deviation of the points to the latter, and
was summarized as residual value. We traced the progression of the
residuals along the stem height (Fig. 13, left), and also related the
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residuals to the diameter differences between TLS and ULS (Fig. 13,
middle and right).

The residuals of the points to the fitted cylinders are larger for
the points from the miniVUX than from the VUX-1 and increase from
bottom to the top of the stems, however, with a slightly smaller increase
trend within the bottom 10 m (residuals between 3.3 cm and 3.7 cm
and a mean of = 3.5 cm for the miniVUX, and between 1.4 cm 1.9 cm
with a mean = 1.6 cm for the VUX-1), and a more distinct trend above
(residuals between 3.5 cm and 4.9 cm for the miniVUX, and between
1.4 cm and 3.3 cm for the VUX-1).

The residuals reveal a small correlation to the differences of the
estimated diameters between TLS and the miniVUX, and the VUX-1,
respectively (𝑅2 = 13.0% and 𝑅2 = 0.4%) within the bottom 10 m of the
stem (Fig. 13, middle). However, the correlation between the diameter
differences and the residuals in upper canopy parts is higher (Fig. 13,
right; 𝑅2 = 35.6% and 𝑅2 = 31.5% for the miniVUX and the VUX-1,
respectively).

The profiles in Fig. 14 show the distribution of points around the
fitted cylinders for the same tree and the identical stem slice, taken
from the filtered point clouds from the miniVUX and the VUX-1, and
centered at 4.8 m above ground. As can be recognized, the magnitude of
horizontal scattering of the points around the fitted cylinder is larger for
the miniVUX (distances to the cylinder in range −11.6 cm to 15.0 cm,
for 942 points) than for the VUX-1 (distances in range −3.7 cm to
9.7 cm, for 194 points).

5. Discussion

5.1. Autonomous stem detection and DBH retrieval

The identification of stem locations marks a key step within our
stem reconstruction framework, as the stems subsequently are traced
towards the top starting at these very positions, and is a prerequisite
if forest inventories should be automated on larger extents and on
an operational level. While the autonomous stem detection has been
issued in several studies for TLS datasets (e.g., Liang et al., 2012;
Olofsson et al., 2014; Wang et al., 2016a), stem reconstruction from
ULS in previous studies predominantly relied on field measured stem
positions (Wieser et al., 2017) or the manual detection of stems within
the point cloud (Brede et al., 2017).

The tree detection rates we could achieve with our approach from
TLS and the miniVUX (97.0% for both systems) is in the range of
what was reported by other studies (Olofsson et al., 2014; Wang et al.,
2016a). Yet, the detection rate was lower for the VUX-1 dataset, within
which 15 stems with DBHs between 10 cm and 45 cm either were
not detected or could not be linked to a tree from the field inventory.
However, the visual inspection of the non-filtered VUX-1 point cloud
revealed that the missed stems were not fully covered by points, neither
in terms of the completeness of the stem’s circumference nor in terms
of a continuous and complete vertical coverage with points in the
evaluated height (0.4 m−3.2 m). A locally insufficient stem sampling
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Fig. 13. Left: Mean (solid line) and standard deviation (shaded are (a) of the residuals of the stem slices along the stems reconstructed from the miniVUX (red) and the VUX-1
(black) datasets. Middle and right: deviation between the diameter estimations from miniVUX and VUX-1, respectively, to diameters from TLS as function of the residuals within a
stem point slice for the bottom 10 m of the stems (middle), and for stem parts above 10 m (right). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 14. Stem point profiles taken from the filtered point clouds as used for cylinder
fitting, centered at 4.8 m height above ground, and taken from the miniVUX (left) and
the VUX-1 (right) dataset, respectively. Both slices show the identical stem slice from
a tree centered at 5375291.6 N, 514708.2 E.

has been reported for ULS data before (Liang et al., 2019) and can be
attributed to occlusion effects, which for ULS were described to occur
predominantly within the bottom parts of the canopy (Wieser et al.,
2017; Morsdorf et al., 2018; Bruggisser et al., 2019). We therefore
attribute the omission of stem locations to the less complete stem
sampling that was achieved with the VUX-1 acquisition, while the
denser sampling schemes of TLS and the miniVUX supported a more
complete stem identification.

The DBH with our approach could be estimated with high accuracies
from TLS, which are in the range of accuracies which were reported
in previous studies (Lindberg et al., 2012; Wang et al., 2016a, 2017).
In contrast, the accuracy of the DBH estimations from the VUX-1 data
was slightly worse, in accordance to Brede et al. (2019), who applied
cylinder fitting to data from the same sensor, while the accuracy for
the miniVUX was lower.

The fraction of trees within the scene, for which the DBH could be
estimated and was accepted as valid solution, was highest for TLS, but
showed lower values for the miniVUX and the VUX-1. The elimination
of DBH estimations with improbable parameters decreased the com-
pleteness of the initially retrieved DBHs by 3.1%, 6.9% and 8.9% for
TLS, the miniVUX and the VUX-1, respectively, however, increased the
reliability of the DBH estimations. We thereby found the deviation of
the radius between the initial solution and the fitted cylinder (𝛥 R in
Table 4) and the maximum tolerated residuals, in this order, to be the
most relevant of the evaluated criteria. Yet, only stems with DBH <
40 cm were affected by these two filtering criteria.

5.2. Stem reconstruction

Previous studies demonstrated the ability to retrieve the stem ta-
pering from TLS data with accuracies in ranges as required for the
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use in FIs (Liang et al., 2016, 2018; Saarinen et al., 2017) when using
automated processing frameworks (e.g., Maas et al., 2008; Wang et al.,
2016a; Saarinen et al., 2017). Following the experimental set up of
previous studies, which aimed at the retrieval of FI parameters (e.g.,
Brede et al., 2019; Liang et al., 2019; Piermattei et al., 2019), we there-
fore took TLS as reference to which we compared the stem diameter
estimates from ULS.

We found that differences between diameter estimates from TLS
and ULS were smaller for larger stem diameters (Fig. 9). Stems with
DBHs > 20 cm could be reconstructed from ULS with differences to
TLS below 1.6 cm and 4.0 cm from the VUX-1 and the miniVUX
datasets, respectively, up to a height of 14 m ( Fig. 10). On tree
heights above, differences between ULS and TLS increased. Increasing
errors in the stem curve or volume estimation within the upper canopy,
however, are a phenomenon, which was described both for TLS and for
ULS (Maas et al., 2008; Wang et al., 2016a; Brede et al., 2019). Yet,
if we consider a tree with a DBH of 45.2 cm and a height of 29.0 m
(tree parameters taken from our field inventory), and a cone-shaped
stem, the stem volume fraction, which is comprised in the bottom 10 m,
amounts to 71.9% of the total stem volume. The respective volume
overestimation for the bottom 10 m of the stem would amount to 7.1%
for an assumed constant overestimation of the diameters of 1.6 cm
(VUX-1). This implies that the fraction of the stems, which contribute
the most to the stem volume, can be reconstructed from the VUX-1 with
accuracies which are close to reported biases for diameter estimations
from TLS (Maas et al., 2008; Liang et al., 2016).

Another aspect, however, that has to be considered alongside the
diameter estimation accuracies, regards the number of tree stems,
which could be reconstructed up to a certain height. The number of
stems, for which diameters could be estimated up to 10 m above
ground, did not show any decline within the TLS dataset, but decreased
continuously for both, the miniVUX and the VUX-1, with higher frac-
tions of reconstructed trees for the miniVUX than for the VUX-1 for
all stem classes and across all heights. However, if the completeness of
the stem reconstruction is considered with regard to the stems, which
were detected and modeled at breast height in the respective datasets,
we see that 45.8% and 77.8% (miniVUX) and 44.4% and 75.0% (VUX-
1) of the initially recognized trees of the medium and the largest stem
class, respectively, were reconstructed up to 10 m above ground. In that
respect, the success rates of the stem reconstruction was comparable
for both datasets, if a stem trunk was detected. We therefore deduce
that our approach works equally well for both systems, in terms of the
completeness with which a forest scene can be reconstructed, and again
ascribe the lower absolute completenesses for the VUX-1 to the lower
point density in this dataset.

On the other hand, the fraction of reconstructed trees dropped
markedly within the upper canopy parts. Yet, the principle repro-

ducibility of the stems towards the tree top is limited, as even for nearly
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windless conditions, movements in the upper canopy parts are present
and lead to a blurring of the tree structure, in particular when multiple
scan lines are combined (Côté et al., 2011; Hackenberg et al., 2015).

The diameter estimates from ULS for trees with DBHs < 20 cm,
inally, did not correspond well to those from TLS.

.3. Effect of acquisition characteristics and sensor properties

In our study, we observed that the point cloud quality, consisting
f the position accuracies of the points and the point density, has a
ajor impact on the feasibility of stem reconstructions. The factors,
hich control the qualities of ULS point clouds, are the same system
arameters as for ALS, comprising the flight altitude and speed, pulse
epetition frequency, beam divergence (Hopkinson, 2007; Morsdorf
t al., 2008; Næsset, 2009) and the scan angle (Morsdorf et al., 2008).
owever, due to the miniaturization of ULS systems, Brede et al. (2019)
nd Liang et al. (2019) argued that particular emphasis should be put
n the sensor’s range accuracy and precision, and the accuracies with
hich the position and the attitude of the platform can be measured.

The point cloud properties impact the derivation of stem diameters
rom ULS in multiple, yet different ways. We can distinguish between
ffects related to the point coverage on the targets, and the accuracy of
he LiDAR measurements.

The impact of the first component, the point coverage on the stems,
s manifested in the absolute number of points within a stem slice on
he one hand, and in the fraction of the stem circumference, which is
overed by points, on the other. Our results revealed the comparability
f the diameter estimates between ULS and TLS to be unaffected by
he absolute number of points within a stem slice, but, conversely,
ecognized considerably lower stem detection rates for lower point
ensities, as well as fractions of stems within the test site, for which the
BH retrieval and the stem reconstructions were successful. As our stem
etection and reconstruction approach relies on local points densities,
he higher point densities in the TLS and the miniVUX datasets were
eneficial and explain the better performance compared to the VUX-
dataset, which had lower point densities. In this sense, the weaker

erformance of the reconstructions from the VUX-1 dataset compared
o the miniVUX is not inherent to the sensor system, but a result of the
mplemented scan mechanism (linear scan vs. circular scan), applied
light trajectory (criss-cross vs. pentagram-shaped) and flight altitude
70 m vs. 65 m), resulting in a sparser sampling scheme for the former
ensor. However, the achieved point density is not only a function of
he pulse density, but is also controlled by the penetrability of the laser
eam into the canopy. This, again, is dominated by the complexity of
he canopy structure, the tree species, the phaenology (Brede et al.,
019; Liang et al., 2019) and the beam divergence (Gaveau and Hill,
003; Hopkinson, 2007; Wieser et al., 2016). Considering the better
enetrability into the canopy for smaller footprint sizes as reported
y Wieser et al. (2016), the smaller footprint of the VUX-1 compared
o the miniVUX is favorable for forestry applications and we expect
hat an acquisition with a denser sampling scheme would increase the
erformance of the stem reconstruction from the VUX-1 dataset.

The completeness of the stem circumference, which is covered
ith points, is another aspect of the point coverage. We found higher

orrespondences in the diameter estimations between ULS and TLS if at
east 50% of the stem circumferences were covered with points in the
LS dataset, but larger differences below that threshold. On the other
and, the majority of the stem slices, which could not be modeled with
ylinders, revealed coverages below half of the stem circumferences.
herefore, also the completeness, with which the stem circumference
as captured, impacts the success rate of the stem reconstructions,
part from the mere point count on the stem. However, we anticipate
hat a sufficient stem coverage with regard to both criteria can be
chieved through a regular criss-cross trajectory, if the strip overlap is
arge enough. For the VUX-1, a distance between parallel flight lines of
38

0 m at a flight altitude of 70 m above ground proved to be sufficiently
dense for our test site. However, the number of points on the stems
also depends on the density of the canopy and a general statement is
difficult to make. On the other hand, the gain from a pentagram-shaped
trajectory is rather small.

The position accuracy of the points within the point cloud represents
the second component impacting the point cloud quality, and was
discussed to be a major limiting factor for the application of ULS
systems in precision forestry (Brede et al., 2019; Liang et al., 2019). In
our study, we analyzed the influence of the residuals of the stem points
around the fitted cylinders on the accuracy of the diameter estimates
from ULS. The impact of the residuals on the differences between a
respective ULS system and TLS was small to negligible within lower,
and medium within upper canopy parts. Yet, our results revealed larger
residuals to the fitted cylinders in general for the miniVUX than for the
VUX-1 within the bottom 10 m of the stems, which were not covered
by understory or leaves and therefore had a distinct stem. We, thus,
consider that the residuals can be attributed to the accuracy of the
sensor system, if analyzed for such distinct structures. If we leave aside
the accuracy with which the position and attitude of the platform are
measured (cf. Brede et al., 2019; Liang et al., 2019), we can assume that
a higher accuracy is related to a smaller footprint in general. On the one
hand, the area within which a backscattering object is located is more
precisely determined and therefore less uncertain for smaller footprints.
At the same time, the distance measurement will be triggered by the
first reflected signals. With a larger footprint size and a simultaneous
oblique incidence angle of the laser on the stems, the measurement is
not triggered by the stem components in the center of the footprint,
but by stem parts from the upper area within the laser beam. These
sections of the stem, however, are closer to the sensor under the given
acquisition geometry, leading to an underestimation of the distance
and, as a consequence, to an overestimation of the diameter. These
two processes related to the footprint size would explain the observed
decreasing accuracy with increasing footprint size from TLS to the VUX-
1 and towards the miniVUX, both in terms of the system accuracy and
the accuracy of the DBH estimation.

6. Conclusion

We presented a framework for the autonomous stem detection and
stem reconstruction from ULS point clouds. Our approach is based on a
stem tracing approach from bottom to the tree tops, whereby cylinders
are fitted to the point cloud using least-squares. The functioning of
our approach was tested for both, a Riegl VUX-1UAV and a Riegl
miniVUX-1DL laser scanning system. The comparison of the estimated
stem diameters across tree heights from the ULS systems to the field-
measured diameters at breast height, and to stem diameters estimated
from TLS above, respectively, revealed the accuracy of the VUX-1UAV
derived estimates to be close to TLS, while the discrepancies to the
references were larger for the miniVUX-1DL.

The experimental set-up further allowed to assess the impact of the
point cloud qualities on the retrieved accuracies of the stem diameter
estimates, in particular the point densities and the system accuracies of
the sensor.

While the accuracy of the estimated stem diameters from both ULS-
systems were higher for tree stems with larger diameters, we found
the number of points on the stem to have no impact on the retrieved
accuracy. Higher completenesses, with which the stem circumference
was captured, on the other hand, increased the accuracy of the di-
ameter estimates, while the discrepancies to the reference dropped for
stem coverages below 50% of the stem circumference. The analysis of
the cylinder fitting process, finally, revealed larger residuals for the
miniVUX-1DL than for the VUX-1UAV. We, thus, anticipate that the
higher correspondences of the diameter estimates from the latter system
to the reference can be attributed to the higher accuracy of this very

sensor system.
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In contrast, we found the point density and the stem coverage to
impact the stem detection and reconstruction rates, as for a higher
coverage of the stem in both, the vertical direction and around the
stem circumference, the completeness with which a stem could be re-
constructed from bottom to the top was higher. For stem circumference
coverages below 50%, the reconstructibility was weak.

Our findings suggest that the completeness, with which the stems
within a forest scene can be detected and reconstructed, is increased, if
a sufficiently high point density is achieved, and if a stem is captured
from multiple directions. The success rate therefore can be increased
through a thorough mission planing, whereby we anticipate a criss-
cross pattern to be an optimal flight scheme, and parallel flight lines
to be sufficient, given that a large enough strip overlap is ensured. In
our tests, we found that the stem slices, which could be reconstructed
from the VUX-1 dataset with differences < 5 cm to TLS, comprised 6
to 286 points, after points from branches and leaves have been filtered,
while an acquisition pattern with spacings between parallel flight strips
of 40 m at a flight altitude of 70 m was dense enough.

ULS systems allow the coverage of larger areas (typically several
hectares to a few km2) and thereby the acquisition of stem shape
information for more trees than is the case in classical FIs or from
TLS. In our study, we could demonstrate the feasibility to autonomously
detect and model trees from ULS datasets. Based on such information
from our tree reconstruction, we are able to derive locally adapted
allometric models in a very time-efficient way, what would not be
possible with TLS or in-situ measurements. Despite the lower accuracy
of the estimated stem diameters from ULS compared to TLS and field
inventory measurements, we therefore see a clear benefit in using ULS
systems within FIs.
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