Riegl Logo

Terrestrial Scanning / Topography & Monitoring

S. J. Buckley, E. Schwarz, V. Terlaky,
J. A. Howell, R. W. C. Arnott
"Terrestrial laser scanning combined with photogrammetry for digital outcrop modelling", ISPRS 2009 15.09.2009

The integration of 3D modeling techniques is often advantageous for obtaining the most complete and useful object coverage for many application areas. In this paper, terrestrial laser scanning and digital photogrammetry were combined for the purposes of modelling a geological outcrop at Castle Creek, British Columbia, Canada. The outcrop, covering approximately 2.5 kmĀ², comprised a smooth, scoured surface where recent glacial retreat had left the underlying sedimentary rocks exposed. The outcrop was of geological interest as an analogue to existing hydrocarbon reservoirs, and detailed spatial data were required to be able to map stratigraphic surfaces in 3D over the extent of the exposure.
Aerial photogrammetry was used to provide a 2.5D digital elevation model of the overall outcrop surface. However, because the sedimentary strata were vertically orientated, local vertical cliffs acted as cross-sections through the geology, and these were surveyed using a terrestrial laser scanner and calibrated digital camera. Digital elevation models (DEMs) created from both methods were registered and merged, with the fused model showing a higher fidelity to the true topographic surface than either input technique. The final model was texture mapped using both the aerial and terrestrial photographs, using a local triangle reassignment to ensure that the most suitable images were chosen for each facet.
This photorealistic model formed the basis for digitising the geological surfaces in 3D and building up a full 3D geocellular volume using these surfaces as input constraints. Because of the high resolution and accuracy of the input datasets, and the efficacy of the merging method, it was possible to interpret and track subtle surface separations over the larger extents of the outcrop.